7

# Integrals

12th Class - CBSE - Mathematics - 9086 Questions - 0 Concepts

#### Important Questions

Q1 Subjective Hard
Evaluate:
$\int { \sqrt { { x }^{ 2 }-16 } } \ dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\int { \cfrac { 2{ x }^{ 3 } }{ \left( 4+{ x }^{ 8 } \right) } } dx=$?
• A. $\cfrac { 1 }{ 2 } \tan ^{ -1 }{ \cfrac { { x }^{ 4 } }{ 2 } } +C$
• B. $\cfrac { 1 }{ 4 } \tan ^{ -1 }{ \cfrac { { x }^{ 4 } }{ 2 } } +C\quad$
• C. $\cfrac { 1 }{ 2 } \tan ^{ -1 }{ { x }^{ 4 } } +C\quad$
• D. none of these

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\int { \cfrac { 3{ x }^{ 5 } }{ \left( 1+{ x }^{ 12 } \right) } } dx=$?
• A. $\tan ^{ -1 }{ { x }^{ 6 } } +C$
• B. $\cfrac { 1 }{ 4 } \tan ^{ -1 }{ { x }^{ 6 } } +C$
• C. $\cfrac { 1 }{ 2 } \tan ^{ -1 }{ { x }^{ 6 } } +C$
• D. none of these

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
$\text { Find: } \displaystyle \int \dfrac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} \ dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Hard
Evaluate:
$\int { \sqrt { 4-{ x }^{ 2 } } } dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q6 Subjective Hard
Evaluate:
$\int { \cfrac { 2x }{ ({ x }^{ 2 }+1)({ x }^{ 2 }+3) } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q7 Subjective Hard
Evaluate:
$\int { \cfrac { { x }^{ 2 } }{ \left( 1+{ x }^{ 3 } \right) } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q8 Subjective Medium
Evaluate the following integrals:
$\int { \cfrac { 1 }{ \sqrt { 7-3x-2{ x }^{ 2 } } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q9 Subjective Medium
Evaluate:
$\int { \cfrac { dx }{ \sqrt { 9{ x }^{ 2 }+16 } } }$

1 Verified Answer | Published on 17th 09, 2020

Q10 Subjective Medium
Evaluate the following integral:
$\displaystyle \int { \cfrac { { e }^{ x } }{ \sqrt { 16-{ e }^{ 2x } } } } dx$