13

Surface Areas and Volumes

10th Class - CBSE - Mathematics - 1288 Questions - 0 Concepts

Important Questions

Q1 Subjective Hard
Derive the formula for the curved surface area and total surface area of the frustum of a cone.

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer

Q2 Subjective Hard
A golf ball has diameter equal to $$4.2cm$$. Its surface has $$200$$ dimples each of radius $$2mm$$. Calculate the total surface area which is exposed to the surroundings assuming that the dimples are hemispherical.

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer
Q3 Subjective Hard
A tent is of the shape of a right circular cylinder upto a height of $$3$$ metres and then becomes a right circular cone with a maximum height of $$13.5$$ metres above the ground. Calculate the cost of painting the inner side of the tent at the rate of Rs. $$2$$ per square metre, if the radius of the base is $$14$$ metres.

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer
Q4 Single Correct Hard
A tent is in the form of a cylinder of diameter $$15m$$ and height $$2.4 m$$, surmounted by a cone of same base and height $$4 m$$. Find the cost of the canvas at Rs. $$50$$ per square meter. (Take $$\pi$$ = $$\dfrac{22}{7}$$)
  • A. $$ \ Rs. 15765$$
  • B. $$\ Rs. 15875$$
  • C. $$\ Rs. 15775$$
  • D. $$\ Rs. 15675$$

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer
Q5 Subjective Hard
A tent of height $$8.25m$$ is in the form of a right circular cylinder with diameter of base $$30m$$ and height $$5.5m$$, surmounted by a right circular cone of the same base. Find the cost of the canvas of the tent at the rate of Rs. $$45$$ per $${m}^{2}$$

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer
Q6 Subjective Hard
A frustum of a cone is $$9cm$$ thick and the diameters of its circular ends are $$28cm$$ and $$4cm$$. Find the volume and lateral surface area of the frustum. (Take $$\pi=22/7$$)

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer

Q7 Subjective Hard
A container open at the top, is in the form of a frustum of a cone of height $$24cm$$ with radii of its lower and upper circular ends as $$8cm$$ and $$20cm$$ respectively. Find the cost of milk which can completely fill the container at the rate of Rs. $$21$$ per litre. (Use $$\pi=22/7$$)

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer
Q8 Subjective Hard
A toy is in the form of a cone mounted on a hemisphere with the same radius. The diameter of the base of the conical portion is $$6cm$$ and its height is $$4cm$$. Determine the surface area of the toy. (Use $$\pi=3.14$$)

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer
Q9 Subjective Hard
The radii of the ends of a frustum of a right circular cone are $$5$$ metres and $$8$$ metres and its lateral height is $$5$$ metres. Find the lateral surface and volume of the frustum.

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer
Q10 Subjective Hard
A toy is in the form of a cone mounted on a hemisphere of radius $$3.5cm$$. The total height of the toy is $$15.5cm$$, find the total surface area and volume of the toy.

Asked in: Mathematics - Surface Areas and Volumes


1 Verified Answer | Published on 07th 09, 2020

View Answer
Questions 122475
Subjects 10
Chapters 93
Enrolled Students 65
Enroll Now For FREE