Mathematics

# $y=\displaystyle\int \cos\left\{2\tan^{-1}\sqrt{\dfrac{1-x}{1+x}}\right\}dx$ is an equation of a family of?

Parabolas

##### SOLUTION
Putting $x=\cos 2\theta$
$\therefore \cos\left\{2\tan^{-1}\sqrt{\dfrac{1-x}{1+x}}\right\}=\cos 2\theta =x$
$\therefore y=\displaystyle\int xdx=\dfrac{x^2}{2}+c$.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
If $I_{1}= \displaystyle \int_{0}^{\infty }\displaystyle \frac{dx}{1+x^{4}}$ and $I_{2}= \displaystyle \int_{0}^{\infty }\displaystyle \frac{x^{2}}{1+x^{4}}\: dx$, then
• A. $I_{1}=2 I_{2}$
• B. $2I_{1}= I_{2}$
• C. none of these
• D. $I_{1}= I_{2}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\displaystyle\int{\frac{1}{(1+x^2)\sqrt{p^2+q^2{(\tan^{-1}{x})}^2}}dx}$ is equal to
• A. $\displaystyle\frac{1}{p}\log{|p(\tan^{-1}{x})+\sqrt{p^2+{(q\tan^{-1}{x})}^2}|}+C$
• B. $\displaystyle\frac{1}{p}\log{|(p\cot^{-1}{x})+\sqrt{p^2+{(p\cot^{-1}{x})}^2}|}+C$
• C. $\displaystyle\frac{1}{q}\log{|q(\cot^{-1}{x})+\sqrt{p^2+{(q\cot^{-1}{x})}^2}|}+C$
• D. $\displaystyle\frac{1}{q}\log{|q(\tan^{-1}{x})+\sqrt{p^2+{(q\tan^{-1}{x})}^2}|}+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve:
$\int \ \sqrt{x^{2}+4x+1} \ dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Obtain $\displaystyle\int _{ 2 }^{ 3 }{ \left( 3x+8 \right) } dx$ as limit of sum.

Let $n \space\epsilon \space N$ & the A.M., G.M., H.M. & the root mean square of $n$ numbers $2n+1, 2n+2, ...,$ up to $n^{th}$ number are $A_{n}$, $G_{n}$, $H_{n}$ and $R_{n}$ respectively.