Mathematics

# Write the value of $\displaystyle \int Xa^{x^{2}+1}dx$

##### SOLUTION
$P=\int Xa^{x^{2}+1}.dx$
Let $x^{2}+1=t$
2x dx = dt
$x dx = \frac{dt}{2}$
$P=\frac{1}{2}\int a^{t}.dt$     we know  $[\int a^{x}=\frac{a^{x}}{ln a}+c]$
$=\frac{1}{2}\frac{a^{t}}{lna}+c$
Now $t=x^{2}+1$
Therefore
$P=\frac{1}{2}\frac{a^{x^{2}+1}}{ln a}+c$ Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Integrate the function
$\cfrac{1}{x-\sqrt{x}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Multiple Correct Hard
$\displaystyle \int _{ \alpha }^{ \beta } \sqrt { \frac { x-\alpha }{ \beta -x } } dx=$
• A. $\displaystyle \frac{\pi^{2}}{2}(\beta-\alpha)$
• B. $\displaystyle \int_{\alpha}{\beta}\sqrt{\frac{\beta+x}{x+\alpha}}dx$
• C. $\displaystyle \int_{\alpha}{\beta}\sqrt{\frac{\beta-x}{x-\alpha}}dx$
• D. $\displaystyle \frac{\pi}{2}(\beta-\alpha)$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of $\int \dfrac{d^2}{dx^2} \, (tan^{-1}x) \, dx$ is equal to
• A. $tan^{-1}x$ + C
• B. x tan - $\dfrac{1}{2} \, log (1 \, + \, x^2) \, + \, C$
• C. $\dfrac{1 \, + \, x^2}{2}$ + C
• D. $\dfrac{1}{1 \, + \, x^2}$ + C

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate $\int \dfrac {(1+2x^{2})dx}{x^{2}(1+x^{2})}$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020