Mathematics

# Write the following function w.r.t $x$.$\dfrac {\cos x}{1-\sin x}$

##### SOLUTION
According to question,

$\int \dfrac{cosx}{1-sinx}dx$

Let,   $1-sinx=t$

$\implies -cosx.dx=dt$

$\implies -\int\dfrac{dt}{t}$

$\implies -lnt+C$

$\implies -ln(1-sinx)+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
$\int _{ 0 }^{ \pi /2 }{ \underbrace { { x }^{ 2 } }_{ I } \underbrace { \csc ^{ 2 }{ xd } }_{ II } } =I$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Simplify:
$\int { \dfrac { secx }{ secx+tanx } }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve:-
$\int \dfrac{{\cos \,x}}{{1 + \cos \,x}}d x$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Find : $\displaystyle \int \dfrac{sin^2x - cos^2 x}{sin\, x\,cos\, x} dx$

Let $\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$