Mathematics

# Write a value of $\int { \cos ^{ 4 }{ x } } \sin { x } dx$

##### SOLUTION
Let $t=\cos{x}\Rightarrow\,dt=-\sin{x}dx$

$I=\displaystyle\int{{\cos}^{4}{x}\sin{x}dx}$

$=\displaystyle\int{-{t}^{4}dt}$

$=\dfrac{-{t}^{5}}{5}+c$    ......where $c$ is the constant of integration.

$=-\dfrac{{\cos}^{5}{x}}{5}+c$    .....where $t=\cos{x}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Find $\int \dfrac{(x^2+1) e^x}{(x+1)^2} dx$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following integral :
$\displaystyle\int_0^2 (x^2 +3)\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\displaystyle \int \dfrac{px^{p+2q-1}-qx^{q-1}}{x^{2p+2q}+2x^{p+q}+1}dx$ is equal to

• A. $-\dfrac{x^{p}}{x^{p+q}+1}+C$
• B. $\dfrac{x^{q}}{x^{p+q}+1}+C$
• C. $\dfrac{x^{p}}{x^{p+q}+1}+C$
• D. $-\dfrac{x^{q}}{x^{p+q}+1}+C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate the given integral.
$\displaystyle \int { \cfrac { 1 }{ x({ x }^{ 4 }+1) } } dx\quad$

$\displaystyle \int_1^2(4x^3-5x^2+6x+9)dx$