Mathematics

# What is the value of the expression $\dfrac{{\cos \left( {{{90}^0} + \theta } \right)\sec \left( { - \theta } \right)\tan \left( {{{180}^0} - \theta } \right)}}{{\sec \left( {{{360}^0} - \theta } \right)\sin \left( {{{180}^0} + \theta } \right)\cot \left( {{{90}^0} - \theta } \right)}} \ \ \ ?$

$-1$

##### SOLUTION

$\dfrac{{\cos \left( {{{90}^0} + \theta } \right)\sec \left( { - \theta } \right)\tan \left( {{{180}^0} - \theta } \right)}}{{\sec \left( {{{360}^0} - \theta } \right)\sin \left( {{{180}^0} + \theta } \right)\cot \left( {{{90}^0} - \theta } \right)}} \ \ \$

$\dfrac{{\sin { \theta } \sec { \theta } \left(-\tan \theta \right)}}{{\sec \theta (-\sin \theta )(-\tan \theta ) }}$

$\implies -1$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
Let ${I_n} = \int_0^\pi {\dfrac{{{{\sin }^2}\left( {nx} \right)}}{{{{\sin }^2}x}}} \,dx\,\,,\,n \in N$, then
• A. ${I_n} = {I_{n + 1}}$
• B. ${I_n} = n\pi$
• C. ${I_1},{I_{2,}}{I_3},.....{I_n}$ are in harmonic progression
• D. ${I_{n + 2}} + {I_n} = {21_{n + 1}}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard

Let $f(x)$ be a function satisfying $f'(x)=f(x)=e^x$ with $f(\mathrm{0})=1$ and $g(x)$ be a function that satisfies $f(x)+g(x)=x^{2}$. Then, the value of the integral $\displaystyle \int_{0}^{1}f(x)g(x)dx$ is
• A. $e+\displaystyle \frac{e^{2}}{2}-\frac{3}{2}$
• B. $e+\displaystyle \frac{e^{2}}{2}+\frac{5}{2}$
• C. $e-\displaystyle \frac{e^{2}}{2}-\frac{5}{2}$
• D. $e-\displaystyle \frac{e^{2}}{2}-\frac{3}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$f'(x) =f(x), f(0) = 1$, then $\displaystyle \int \frac{dx}{f(x) + f(-x)}$
• A. $log (e^{2x} + 1) + C$
• B. $log (e^{x} + e^{-x}) + C$
• C. None
• D. $tan^{-1} (e^{x}) + C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Prove that $\displaystyle\int^4_1\dfrac{\sqrt{x}}{(\sqrt{5-x}+\sqrt{x})}dx=\dfrac{3}{2}$.

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$