Mathematics

# Value of ${\int}_{-\pi}^{\dfrac{17\pi}{2}}\left(\left|\sin x\right|\right)dx$

$19$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int {\cos 2\theta \,\log \left( {\frac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right)} d\theta$ is equal to.
• A. ${(\cos \theta + \sin \theta )^2}\log \left( {\frac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right) + C$
• B. $\frac{{{{(\cos \theta - \sin \theta )}^2}}}{2}\log \left( {\frac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right) + C$
• C. None of these
• D. ${(\cos \theta - \sin \theta )^2}\log \left( {\frac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right) + C$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve :
$\displaystyle \int \dfrac {x-3}{x^2-6x+17}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\displaystyle \int_{ {\pi^{3}}/{27}}^{ {\pi^{3}}/{8}}sinx.dt$ , where $t= x^3$, is?
• A. $cos\displaystyle \frac{\pi^{3}}{27}-cos\displaystyle \frac{\pi^{3}}{8}$
• B. $\displaystyle \frac{\pi^2}{6}$
• C. None of these
• D. $\displaystyle \frac{\pi^{2}}{6}+(3-\sqrt3)\pi-3$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve:
$\int\dfrac{x^{2}+1}{x^{2}-4x+6}dx$

Find the value of $\displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}}|\sin x|\ dx$.