Mathematics

Value of $${\int}_{-\pi}^{\dfrac{17\pi}{2}}\left(\left|\sin x\right|\right)dx$$


ANSWER

$$19$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\displaystyle \int {\cos 2\theta \,\log \left( {\frac{{\cos \theta  + \sin \theta }}{{\cos \theta  - \sin \theta }}} \right)} d\theta $$ is equal to.
  • A. $${(\cos \theta + \sin \theta )^2}\log \left( {\frac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right) + C$$
  • B. $$\frac{{{{(\cos \theta - \sin \theta )}^2}}}{2}\log \left( {\frac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right) + C$$
  • C. None of these
  • D. $${(\cos \theta - \sin \theta )^2}\log \left( {\frac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right) + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Solve :
$$\displaystyle \int \dfrac {x-3}{x^2-6x+17}dx $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
The value of $$\displaystyle \int_{ {\pi^{3}}/{27}}^{ {\pi^{3}}/{8}}sinx.dt$$ , where $$t= x^3$$, is?
  • A. $$cos\displaystyle \frac{\pi^{3}}{27}-cos\displaystyle \frac{\pi^{3}}{8}$$
  • B. $$\displaystyle \frac{\pi^2}{6}$$
  • C. None of these
  • D. $$\displaystyle \frac{\pi^{2}}{6}+(3-\sqrt3)\pi-3$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Solve:
$$\int\dfrac{x^{2}+1}{x^{2}-4x+6}dx$$                                                                          

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Find the value of $$\displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}}|\sin x|\ dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer