Mathematics

# Value of $I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { (\sin { x } +\cos { x } ) }^{ 2 } }{ \sqrt { 1+\sin { 2x } } } dx }$ is

$0$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
$\text { Evaluate: } \int_{0}^{\pi / 2} \log (\sin x) \mathrm{d} \mathrm{x}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int { \cfrac { x }{ 1+{ x }^{ 4 } } } dx$ is equal to
• A. $\cfrac { 1 }{ 2 } \cot ^{ -1 }{ { x }^{ 2 } } +C$
• B. $\cot ^{ -1 }{ { x }^{ 2 } } +C$
• C. $\tan ^{ -1 }{ { x }^{ 2 } } +C\quad$
• D. $\cfrac { 1 }{ 2 } \tan ^{ -1 }{ { x }^{ 2 } } +C\quad$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate the function    $e^x(\sin x+\cos x)$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve:
$\int\limits_0^{\cfrac{\pi }{2}} {{x^2}} \sin x\,\,dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Evaluate $\displaystyle \int_0^{10\pi}|\sin\,x|dx$