Mathematics

Using integral $$\int _{ 0 }^{ \pi /2 }{ \ln { \left( \sin { x }  \right)  }  } dx=\int _{ 0 }^{ \pi /2 }{ \ln { \left( \sec { x }  \right)  }  } dx=-\cfrac { \pi  }{ 2 } \ln { 2 } $$
Evaluate $$\int _{ -\pi /4 }^{ \pi /4 }{ \ln { \left( \cfrac { \sin { x } +\cos { x }  }{ \cos { x } -\sin { x }  }  \right)  } dx= } $$


ANSWER

$$0$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate $$\displaystyle\int^{\pi/3}_0\tan x dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the following integral
$$\int { \cfrac { \cos { x }  }{ \cos { \left( x-a \right)  }  }  } dx\quad $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int \dfrac{f(x)g'(x)-f'(x)g(x)}{f(x)g(x)} \left [ log(g(x))-log(f(x)) \right ]dx=$$
  • A. $$\log (\dfrac{g(x)}{f(x)} )+C$$
  • B. $$\dfrac{(g)x}{f(x)}\log(\dfrac{g(x)}{f(x)} )+C$$
  • C. $$\log\left [ \dfrac{g(X)}{f(X)} \right ]-\dfrac{g(x)}{f(x)}+C$$
  • D. $$\dfrac{1}{2} \left [ log(\dfrac{g(x)}{f(x)} ) \right ]^{2}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
By using the properties of definite integrals, evaluate the integral   $$\displaystyle \int_0^2x\sqrt {2-x}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate $$\int \dfrac {1}{\sqrt {7-6x-{x}^{2}}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer