Mathematics

# The  value of the integral $\int\int xy(x+y)dx {\,}dy$ over the area between $y=x^2$ and $y=x$ is

$\dfrac{3}{56}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
Evaluate: $\displaystyle\int \dfrac {dx}{\sqrt {-x^2-x}}$
• A. $\sin^{-1} (4x+1)+K$
• B. $\sin^{-1} (4x-1)+K$
• C. None of these
• D. $\sin ^ {-1}(2x+1)+K$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following integral
$\int { \cfrac { \sin { 2x } }{ a\cos ^{ 2 }{ x } +b\sin ^{ 2 }{ x } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve :
$\int x^{ \sin x} \left( \dfrac {sinx}{x} + \cos x . logx \right) dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $\displaystyle \int \frac{3\sin x+2\cos x}{3\cos x+2\sin x}dx=ax+b \ln \left | 2\sin x+3\cos x \right |+C$, then
• A. $\displaystyle a=-\frac{12}{13}, b=\frac{15}{39}$
• B. $\displaystyle a=-\frac{7}{13}, b=\frac{6}{13}$
• C. $\displaystyle a=-\frac{7}{13}, b=-\frac{6}{13}$
• D. $\displaystyle a=\frac{12}{13}, b=-\frac{15}{39}$

Solve $\displaystyle \int\dfrac {2+\sin 2x}{2-\sin 2x}dx$