Mathematics

# The values of $x$ for the given equation ${\sec ^{ - 1}}\left( x \right) - {\sec ^{ - 1}}\left( {\sqrt 2 } \right) = \frac{\pi }{2}$ is

$-\sqrt{2}$

##### SOLUTION
Consider the given equation.
$\begin{array}{l} { \sec ^{ -1 } }\left( x \right) -{ \sec ^{ -1 } }\left( { \sqrt { 2 } } \right) =\dfrac { \pi }{ 2 } \\ { \sec ^{ -1 } }\left( x \right) =\dfrac { \pi }{ 2 } +\dfrac { \pi }{ 4 } \\ { \sec ^{ -1 } }\left( x \right) =\dfrac { { 3\pi } }{ 4 } \\ x=-\sqrt { 2 } \\ Hence,\, option\, A\, is\, \, the\, \, correct\, answer.\, \end{array}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Write a value of
$\int { \tan { x } \sec ^{ 2 }{ x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\int \frac{cos4x}{sin2x}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Multiple Correct Hard
The value of $\displaystyle \int_{0}^{\pi} \frac{x\sin 2x \sin((\pi/2)\cos x)}{2x-\pi} dx$ is
• A. $4/\pi^{2}$
• B. $2/\pi^{2}$
• C. $8/\pi^{2}$
• D. $\displaystyle 2\int_{0}^{1}t \sin(\pi/2)t)dt$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate : $\displaystyle \int_{- \pi}^{\pi} \dfrac{\sin^2 x}{1 + e^x}dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Hard
Evaluate the given integral.
$\displaystyle \int { { e }^{ x } } \left( \log { x } +\cfrac { 1 }{ { x }^{ 2 } } \right) dx$