Mathematics

The value of $$\int_{-1}^{3}[tan^{-1}(\frac{x}{x^{2}+1})+tan^{-1}(\frac{x^{2}}{x})]dx$$ 


ANSWER

2$$\pi $$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\int { \cfrac { { x }^{ 2 } }{ (9+4{ x }^{ 2 }) }  } dx=$$?
  • A. $$\cfrac { x }{ 4 } -\cfrac { 1 }{ 8 } \tan ^{ -1 }{ \cfrac { x }{ 3 } } +C$$
  • B. $$\cfrac { x }{ 4 } -\cfrac { 3 }{ 8 } \tan ^{ -1 }{ \cfrac { x }{ 3 } } +C$$
  • C. none of these
  • D. $$\cfrac { x }{ 4 } -\cfrac { 3 }{ 8 } \tan ^{ -1 }{ \cfrac { 2x }{ 3 } } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Hard
Solve $$\displaystyle\int \dfrac {dx}{\sin x+\sec x}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle\int { \dfrac { { x }^{ n-1 } }{ { x }^{ 2n }+{ a }^{ 2 } } dx } $$ is equal to
  • A. $$\dfrac { 1 }{ na } \tan ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$$
  • B. $$\dfrac { n }{ a } \sin ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$$
  • C. $$\dfrac { n }{ a } \cos ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$$
  • D. $$\dfrac { 1 }{ na } \cot ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$$
  • E. $$\dfrac { n }{ a } \tan ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Let $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$  be continuous functions, then the value of $$\displaystyle\int_{\displaystyle-\frac{\pi}{2}}^{\displaystyle\frac{\pi}{2}}{(f(x)+f(-x))(g(x)-g(-x))dx}$$, is equal to
  • A. $$-1$$
  • B. $$1$$
  • C. none of these
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
$$\int { \cfrac { f'(x) }{ f(x) } dx } =\log { [f(x)] } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer