Mathematics

The value of  $$\int _{ { \sqrt { \ln { 2 }  }  } }^{ { \sqrt { \ln { 3 }  }  } } \dfrac { x\sin  x^{ { 2 } } }{ \sin  x^{ { 2 } }+\sin  \left( \ln { 6 } -x^{ { 2 } } \right)  } dx$$  is


ANSWER

$$\dfrac { 1 } { 4 } \ln \dfrac { 3 } { 2 }$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate the following integral:
$$\displaystyle\int^{\pi/4}_0\dfrac{\tan^3x}{(1+\cos 2x)}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Assertion & Reason Hard
ASSERTION

Statement- 1 :$$\lim_{n\rightarrow \infty }\dfrac{1^{m}+2^{m}+3^{m}+....n^{m}}{n^{m+1}}=\dfrac{1}{m+1}(m\neq -1)$$

REASON

Statement- 2 : The above limit equals $$\int_{0}^{1}x^{m}dx$$

  • A. Statement-1 is True, Statement-2 is True ; Statement-2 is NOT a correct explanation for Statement-1
  • B. Statement -1 is True, Statement -2 is False
  • C. Statement -1 is False, Statement -2 is True
  • D. Statement -1 is True, Statement -2 is True ; Statement -2 is a correct explanation for Statement -1

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
The anti derivative of $$\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)$$ equals
  • A. $$\dfrac{1}{3}x^{\dfrac{1}{3}}+2x^{\dfrac{1}{2}}+C$$
  • B. $$\dfrac{2}{3}x^{\dfrac{2}{3}}+\dfrac{1}{2}x^{2}+C$$
  • C. $$\dfrac{2}{3}x^{\dfrac{3}{2}}+\dfrac{1}{2}x^{\dfrac{1}{2}}+C$$
  • D. $$\dfrac{2}{3}x^{\dfrac{3}{2}}+2x^{\dfrac{1}{2}}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle \int \frac{1}{x\sqrt{1-x^{3}}}dx=a\log \left | \frac{\sqrt{1-x^{3}}-1}{\sqrt{1-x^{3}}+1} \right |+b$$, then a is equal to
  • A. $$\displaystyle\frac {2}{3}$$
  • B. $$\displaystyle \frac {-1}{3}$$
  • C. $$\displaystyle \frac {-2}{3} $$
  • D. $$\displaystyle\frac {1}{3}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int {\cfrac{{dx}}{{{x^2}{{\left( {1 + {x^5}} \right)}^{4/5}}}}} $$ is equal to:
  • A. $$ - \cfrac{{{{\left( {1 + {x^5}} \right)}^{1/5}}}}{{5x}} + {\rm{C}}$$
  • B. $$\cfrac{{{{\left( {1 + {x^5}} \right)}^{1/5}}}}{{5x}} + {\rm{C}}$$
  • C. $$\cfrac{{{{\left( {1 + {x^5}} \right)}^{1/5}}}}{x} + {\rm{C}}$$
  • D. $$ - \cfrac{{{{\left( {1 + {x^5}} \right)}^{1/5}}}}{x} + {\rm{C}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer