Mathematics

# The value of the integration $\displaystyle\int^{\pi/4}_{-\pi/4}\left(\lambda |\sin x|+\dfrac{\mu \sin x}{1+\cos x}+\gamma\right)dx$.

Is independent of $\mu$ only

##### SOLUTION
$I=2\lambda\displaystyle\int^{\dfrac{\pi}{4}}_0\sin x dx+\mu\displaystyle\int^{\dfrac{\pi}{4}}_{-\dfrac{\pi}{4}}\tan \dfrac{x}{2}dx+\gamma\displaystyle\int^{\dfrac{\pi}{4}}_{-\dfrac{\pi}{4}}dx$
$=2\lambda\left(1-\dfrac{1}{\sqrt{2}}\right)-0+\gamma\left(\dfrac{\pi}{2}\right)$
$(\because \tan\dfrac{x}{2}$ is an odd function$)$.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate: $\int {\dfrac{{dx}}{{\left( {5 - 8x - {x^2}} \right)}}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int \frac{x^{2}\tan ^{-1}x}{1+x^{2}}dx$
• A. $\displaystyle \tan^{-1}x-\frac{1}{2}\log\left ( 1+x^{2} \right )-\frac{1}{2}\left ( \tan^{-1}x \right )^{2}.$
• B. $\displaystyle x\tan^{-1}x+\log\left ( 1+x^{2} \right )-\frac{1}{2}\left ( \tan^{-1}x \right )^{2}.$
• C. $\displaystyle x\tan^{-1}x-\frac{1}{2}\log\left ( 1+x^{2} \right )+\frac{1}{2}\left ( \tan^{-1}x \right )^{2}.$
• D. $\displaystyle x\tan^{-1}x-\frac{1}{2}\log\left ( 1+x^{2} \right )-\frac{1}{2}\left ( \tan^{-1}x \right )^{2}.$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following definite integral :
$\displaystyle \int_{0}^{2}\dfrac {1}{4+x-x^2}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\displaystyle \int e^{\tan ^{-1}x}(1+x+x^{2}) d(\cot ^{-1}x)$ is equal to
• A. $\displaystyle -e ^{\displaystyle \tan ^{-1}x}+c$
• B. $\displaystyle e ^{\displaystyle \tan ^{-1}x}+c$
• C. $\displaystyle xe ^{\displaystyle \tan ^{-1}x}+c$
• D. $\displaystyle -xe ^{\displaystyle \tan ^{-1}x}+c$

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Hard
In calculating a number of integrals we had to use the method of integration by parts several times in succession.
The result could be obtained more rapidly and in a more concise form by using the so-called generalized formula for integration by parts
$\displaystyle \int u\left ( x \right )v\left ( x \right )dx=u\left ( x \right )v_{1}-u'\left ( x \right )v_{2}\left ( x \right )+u''\left ( x \right )v_{3}\left ( x \right )+...+\left ( -1 \right )^{n-1}u^{n-1}\left ( x \right )V_{n}\left ( x \right ) \\ -\left ( -1 \right )^{n-1}\int u^{n}\left ( x \right )V_{n}\left ( x \right )dx$
where  $\displaystyle v_{1}\left ( x \right )=\int v\left ( x \right )dx,v_{2}\left ( x \right )=\int v_{1}\left ( x \right )dx ..., v_{n}\left ( x \right )= \int v_{n-1}\left ( x \right )dx$
Of course, we assume that all derivatives and integrals appearing in this formula exist. The use of the generalized formula for integration by parts is especially useful when  calculating $\displaystyle \int P_{n}\left ( x \right )Q\left ( x \right )dx,$ where $\displaystyle P_{n}\left ( x \right )$ is polynomial of degree n and the factor Q(x) is such that it can be integrated successively n+1 times.