Mathematics

The value of the integral $\displaystyle \int_{0}^{\pi /2}\frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}dx$ is

$\displaystyle \pi /4$

$\displaystyle \int_{0}^{\pi /2}\frac{dx}{1+\tan ^{3}}x$

SOLUTION

Its FREE, you're just one step away

Multiple Correct Hard Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

Realted Questions

Q1 Subjective Medium
Evaluate the following integral
$\int { \cfrac { \cos { 2x } }{ { \left( \cos { x } +\sin { x } \right) }^{ 2 } } } dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\displaystyle\int{\frac{1}{(1+x^2)\sqrt{p^2+q^2{(\tan^{-1}{x})}^2}}dx}$ is equal to
• A. $\displaystyle\frac{1}{p}\log{|p(\tan^{-1}{x})+\sqrt{p^2+{(q\tan^{-1}{x})}^2}|}+C$
• B. $\displaystyle\frac{1}{p}\log{|(p\cot^{-1}{x})+\sqrt{p^2+{(p\cot^{-1}{x})}^2}|}+C$
• C. $\displaystyle\frac{1}{q}\log{|q(\cot^{-1}{x})+\sqrt{p^2+{(q\cot^{-1}{x})}^2}|}+C$
• D. $\displaystyle\frac{1}{q}\log{|q(\tan^{-1}{x})+\sqrt{p^2+{(q\tan^{-1}{x})}^2}|}+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value if the integral
$\displaystyle \int _{ 1 }^{ 2 }{ { e }^{ x }\left( \log _{ e }{ x } +\cfrac { x+1 }{ x } \right) } dx$ is
• A. ${ e }^{ 2 }\left( 1+\log _{ e }{ 2 } \right)$
• B. ${ e }^{ 2 }-e$
• C. ${ e }^{ 2 }-e \left( 1+\log _{ e }{ 2 } \right)$
• D. ${ e }^{ 2 }\left( 1+\log _{ e }{ 2 } \right)-e$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate:
$\displaystyle\int \dfrac{\sin^3xdx}{(\cos^4x+3\cos^2x+1)\tan^{-1}(\sec x+\cos x)}$.

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$