Mathematics

The value of the integral $$\displaystyle \int_{0}^{\pi /2}\frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}dx$$ is


ANSWER

$$\displaystyle \pi /4$$

$$\displaystyle \int_{0}^{\pi /2}\frac{dx}{1+\tan ^{3}}x$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Multiple Correct Hard Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate the following integral
$$\int { \cfrac { \cos { 2x }  }{ { \left( \cos { x } +\sin { x }  \right)  }^{ 2 } }  } dx\quad $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\displaystyle\int{\frac{1}{(1+x^2)\sqrt{p^2+q^2{(\tan^{-1}{x})}^2}}dx}$$ is equal to
  • A. $$\displaystyle\frac{1}{p}\log{|p(\tan^{-1}{x})+\sqrt{p^2+{(q\tan^{-1}{x})}^2}|}+C$$
  • B. $$\displaystyle\frac{1}{p}\log{|(p\cot^{-1}{x})+\sqrt{p^2+{(p\cot^{-1}{x})}^2}|}+C$$
  • C. $$\displaystyle\frac{1}{q}\log{|q(\cot^{-1}{x})+\sqrt{p^2+{(q\cot^{-1}{x})}^2}|}+C$$
  • D. $$\displaystyle\frac{1}{q}\log{|q(\tan^{-1}{x})+\sqrt{p^2+{(q\tan^{-1}{x})}^2}|}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
The value if the integral
$$\displaystyle \int _{ 1 }^{ 2 }{ { e }^{ x }\left( \log _{ e }{ x } +\cfrac { x+1 }{ x }  \right)  } dx$$ is
  • A. $${ e }^{ 2 }\left( 1+\log _{ e }{ 2 } \right) $$
  • B. $${ e }^{ 2 }-e$$
  • C. $${ e }^{ 2 }-e \left( 1+\log _{ e }{ 2 } \right) $$
  • D. $${ e }^{ 2 }\left( 1+\log _{ e }{ 2 } \right)-e$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate:
$$\displaystyle\int \dfrac{\sin^3xdx}{(\cos^4x+3\cos^2x+1)\tan^{-1}(\sec x+\cos x)}$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer