Mathematics

# The value of the integral $\displaystyle \int^{1/\sqrt{3}}_{1/\sqrt{3}} \dfrac{x^4}{1-x^4} cos ^{-1} \dfrac{2x}{1+x^2} dx$

$0$

##### SOLUTION
Given,

$\displaystyle \int _{\tfrac{1}{\sqrt{3}}}^{\tfrac{1}{\sqrt{3}}}\dfrac{x^4}{1-x^4}\cos ^{-1}\left(\dfrac{2x}{1+x^2}\right)dx$

we have formula,

$\int _a^af\left(x\right)dx=0,\:a\ne \infty$

$=0$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
$\displaystyle \int {{{\tan }^{ - 1}}} \sqrt {\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}}} \,dx$, where $\displaystyle 0 < x < \frac{\pi }{2}$. is equal to

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
The value of $\int { \left\{ \ln \left( 1+\sin { x } \right) +x\tan { \left( \dfrac { \pi }{ 4 } -\dfrac { x }{ 2 } \right) } \right\} } dx$ is equal to:
• A. $\ell n\left( 1+\sin { x } \right) +C$
• B. $-x\ell n\left( 1+\sin { x } \right) +C$
• C. $\ell n\left( 1-\sin { x } \right) +C$
• D. $x\ell n \left( 1+\sin { x } \right) +C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of intergral$\int_{\pi \4}^{3\\pi }\frac{x}{1+4x}$
• A.
• B.
• C.
• D.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
If $h(x) = \int _{1}^{x} \sin^{4} t dt,$ then $h(x + \pi)$ equals
• A. $h(x) h(\pi)$
• B. $h(x) -h(\pi)$
• C. $h(x)/h(\pi)$
• D. $h(x) + h(\pi)$

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Hard
Let us consider the integral of the following forms
$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$
Case I If $m>0$, then put $\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$
Case II If $p>0$, then put $\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$
Case III If quadratic equation $mx^2+nx+p=0$ has real roots $\alpha$ and $\beta$, then put $\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$