Mathematics

# The value of the integral $\displaystyle \int \frac{e^{7\log x} - e^{6\log x}}{e^{5\log x} - e^{4 \log x}} dx$ is equal to

$\displaystyle \frac{x^{3}}{3}+c$

##### SOLUTION
$\displaystyle\int \dfrac { e^{ 7\log x }-e^{ 6\log x } }{ e^{ 5\log x }-e^{ 4\log x } } dx=\int { \cfrac { { x }^{ 7 }-{ x }^{ 6 } }{ { x }^{ 5 }-{ x }^{ 4 } } dx }\displaystyle=\int { { x }^{ 2 }dx } =\cfrac { { x }^{ 3 } }{ 3 } +c$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium

Integrate $\displaystyle \int \frac {\sec^2 x }{\sqrt {\tan^2x+4}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate : $\displaystyle\int^1_0|2x-1|dx$
• A. $2$
• B. $1$
• C. $0$
• D. $\dfrac{1}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Evaluate
$\displaystyle \int \dfrac{1}{x^{2}+4x+8}dx$
• A. $\dfrac{\tan^{-1}(\dfrac{x}{2})}{2}$
• B. $\dfrac{\tan^{-1}(\dfrac{x-2}{2})}{2}$
• C. None of these
• D. $\dfrac{\tan^{-1}(\dfrac{x+2}{2})}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Let $\displaystyle \frac{{df(x)}}{{dx}} = \frac{{{e^{\sin x}}}}{x}, x>0$. If $\displaystyle \int_1^4 {\frac{{3{e^{\sin {x^3}}}}}{x}dx = f(k) - f(1)}$ then one of the possible values of k is
• A. $16$
• B. $63$
• C. $15$
• D. $64$

$\displaystyle\int \dfrac{1}{e^x+e^{-x}}dx$.