Mathematics

The value of the definite integral $$\displaystyle \int_{-0}^{+1}(x)In (f+2^{x}+3^{x}+6^{x})dx$$ equa;s


ANSWER

$$\dfrac {In 2+In 3}{2}$$


View Full Answer

Its FREE, you're just one step away

Create your Digital Resume For FREE on your name's sub domain "yourname.wcard.io". Register Here!


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 124
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Evaluate: $$\displaystyle\int \dfrac{1}{\sqrt{(x-1)} \sqrt{(x-2)}}dx$$
  • A. $$\ln(|2\sqrt{x^2-3x+2}|)+c$$
  • B. $$\ln(|2\sqrt{x^2-3x+2}-2x+3|)+c$$
  • C. $$\ln(|\sqrt{x^2-3x+2}+2x-3|)+c$$
  • D. $$\ln(|2\sqrt{x^2-3x+2}+2x-3|)+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 TRUE/FALSE Hard
State whether the given statement is True or False
$$\int_0^2 e^{x^2} dx$$ can be represented as $$ 2\displaystyle \lim_{n \rightarrow \infty}\dfrac{1}{n}[e^0+e^{\frac{4}{n^2}}+e^{\frac{16}{n^2}}+......+e^{\frac{2(n-1)^2}{n^2}}]$$
  • A. False
  • B. True

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int \dfrac { x ^ { 2 } + x - 1 } { x ^ { 2 } + x - 6 } d x =$$
  • A. $$x + \log p + 5 | + \log | x - 2 | + c$$
  • B. $$x - \log | x + 3 | - \log | x - 2 | + c$$
  • C. None of these
  • D. $$x - \log | x + 3 | + \log | x - 2 | + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
Evaluate $$\displaystyle\int_0^{\displaystyle\sqrt{3}}{\frac{1}{1+x^2}.\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}dx}$$.
  • A. $$\displaystyle\frac{5}{72}\pi^2$$
  • B. $$\displaystyle\frac{13}{144}\pi^2$$
  • C. $$\displaystyle\frac{1}{12}\pi^2$$
  • D. $$\displaystyle\frac{7}{72}\pi^2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$n \space\epsilon \space N$$ & the A.M., G.M., H.M. & the root mean square of $$n$$ numbers $$2n+1, 2n+2, ...,$$ up to $$n^{th}$$ number are $$A_{n}$$, $$G_{n}$$, $$H_{n}$$ and $$R_{n}$$ respectively. 
On the basis of above information answer the following questions

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer