Mathematics

The value of the defined integral $$\displaystyle \int^{\pi/2}_{0}(\sin x+\cos x)\sqrt {\dfrac {e^{x}}{\sin x}}dx$$ equals


ANSWER

$$2\sqrt {e^{\pi/2}}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Evaluate the given integral.
$$\displaystyle\int { \cfrac { \cos { 2x } -\cos { 2\theta  }  }{ \cos { x } -\cos { \theta  }  }  } dx$$
  • A. $$2\left( \sin { x } -x\cos { \theta } \right) +C$$
  • B. $$2\left( \sin { x } +2x\cos { \theta } \right) +C\quad $$
  • C. $$2\left( \sin { x } -2x\cos { \theta } \right) +C$$
  • D. $$2\left( \sin { x } +x\cos { \theta } \right) +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Match the following.
I.$$\displaystyle \int e^{x}(\sin x+\cos x)dx=$$               a)$$ e^{x}\tan x+c$$
II.$$\ \displaystyle \int e^{x}(\cos x-\sin x)dx=$$            b)$$ e^{x}\log\sec x+c$$
III.$$\ \displaystyle \int e^{x}(\tan x+\sec^{2}x)dx=$$        c)$$ e^{x}\sin x+c$$
IV. $$\displaystyle \int e^{x} (\tan x+ \log \sec x)dx=$$     d)$$ e^{x}\cos x+c$$
  • A. I-a, II- b, III- c, IV- d
  • B. I-b, II- c, III- a, IV- d
  • C. I-b, II- d, III- c, IV- a
  • D. I-c, II- d, III- a, IV- b

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate the following integral as the limit of sum:
$$\displaystyle\int^2_0x^3dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate the following integral:
$$\displaystyle\int^{\pi}_0\dfrac{dx}{(6-\cos x)}$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int { (\cfrac { { 2 }^{ x }-5^{ x } }{ 10^{ x } } )dx } $$ is equal to __________________.
  • A. $$\cfrac { { 2 }^{ x } }{ \log _{ e }{ 2 } } -\cfrac { 5^{ x } }{ \log _{ e }{ 5 } } +c$$
  • B. $$\cfrac { { 2 }^{ x } }{ \log _{ e }{ 2 } } +\cfrac { 5^{ x } }{ \log _{ e }{ 5 } } +c$$
  • C. $$\cfrac { { 5 }^{ -x } }{ \log _{ e }{ 5 } } -\cfrac { 2^{ -x } }{ \log _{ e }{ 2 } } +c$$
  • D. $$\cfrac { { 2 }^{ -x } }{ \log _{ e }{ 2 } } -\cfrac { 5^{ -x } }{ \log _{ e }{ 5 } } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer