Mathematics

The value of the define integral $$\int_{\frac{3}{2}}^{\frac{9}{4}}[\sqrt{2x-\sqrt{5(4x-5)}}+\sqrt{2x+\sqrt{5(4x-5)}}]dx$$ is equal to 


ANSWER

$$4\sqrt{5}-\frac{2\sqrt{2}}{5}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
The integral $$\int_{\pi /4}^{\pi / 2}(2cosec x)^{17}dx$$ is equal to
  • A. $$\int_{0}^{\log(1 + \sqrt {2})} 2(e^{u} + e^{-u})^{17}du$$
  • B. $$\int_{0}^{\log(1 + \sqrt {2})} 2(e^{u} - e^{-u})^{17}du$$
  • C. $$\int_{0}^{\log(1 + \sqrt {2})} 2(e^{u} - e^{-u})^{16}du$$
  • D. $$\int_{0}^{\log(1 + \sqrt {2})} 2(e^{u} + e^{-u})^{16}du$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Let $$f(0) = 0$$ and $$\displaystyle \int_{0}^{2}{f}'(2t)e^{f(2t)} \:dt=5$$.
Then the value of $$f (4)$$ is?
  • A. $$\log 2$$
  • B. $$\log 7$$
  • C. $$\log 13$$
  • D. $$\log 11$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \frac{3\mathrm{x}^{2}+1}{(\mathrm{x}^{2}+1)^{3}}=\frac{\mathrm{A}\mathrm{x}+\mathrm{B}}{(\mathrm{x}^{2}+1)}+\frac{\mathrm{C}\mathrm{x}+\mathrm{D}}{(\mathrm{x}^{2}+1)^{2}}+\frac{\mathrm{E}\mathrm{x}+\mathrm{F}}{(\mathrm{x}^{2}+1)^{3}}$$ then $$A + C + E + F =$$
  • A. 10
  • B. -10
  • C. 2
  • D. -2

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle\int \frac{x^{3}}{25x^{8}-16}dx.$$
  • A. $$\displaystyle \frac{1}{160}\log \frac{5x^{4}+4}{5x^{4}-4}$$
  • B. $$\displaystyle \frac{1}{80}\log \frac{5x^{4}-4}{5x^{4}+4}$$
  • C. $$\displaystyle \frac{1}{40}\log \frac{5x^{4}+4}{5x^{4}-4}$$
  • D. $$\displaystyle \frac{1}{160}\log \frac{5x^{4}-4}{5x^{4}+4}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\displaystyle \overset{1}{\underset{-1}{\int}} x|x|dx$$ is equal to
  • A. $$\dfrac{2}{3}$$
  • B. $$-\dfrac{2}{3}$$
  • C. None of these
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer