Mathematics

The value of the define integral $$\displaystyle \int^{1}_{0}e^{-x^{2}}dx+\displaystyle \int^{e}_{1}\sqrt {-ln x}dx$$ is equal to


ANSWER

$$e^{-\dfrac {1}{3}}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
The value of $$\int \dfrac {10^{x/2}}{\sqrt {10^{-x} - 10^{x}}}\, dx$$ is
  • A. $$2\sqrt {10^{-x} + 10^{x}} + c$$
  • B. $$\dfrac {1}{\log_{e}10}\sin h^{-1} (10^{x}) + c$$
  • C. $$\dfrac {-1}{\log_{e}10}\sin h^{-1}(10^{x}) + c$$
  • D. $$\dfrac {1}{\log_{2}10}\sin^{-1}(10^{x}) + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\int { \cfrac { dx }{ \left( 9+{ 4x }^{ 2 } \right)  }  } =$$
  • A. $$\cfrac { 1 }{ 2 } \tan ^{ -1 }{ \cfrac { 2x }{ 3 } } +C$$
  • B. $$\cfrac { 1 }{ 6 } \tan ^{ -1 }{ \cfrac { 3x }{ 2 } } +C$$
  • C. none of these
  • D. $$\cfrac { 1 }{ 6 } \tan ^{ -1 }{ \cfrac { 2x }{ 3 } } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Prove that $$\displaystyle \int_{0}^{a}f(x)dx = \int_{0}^{a} f(a - x)dx$$ and hence evaluate $$\displaystyle \int_{0}^{a} \dfrac {\sqrt {x}}{\sqrt {x} + \sqrt {a - x}} dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate the following integrals :
$$\displaystyle\int_{0}^{\pi}x\sin x\cos^{4}x\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
Solve $$\displaystyle \int \dfrac{\sqrt{1 - x^2} + \sqrt{1 + x^2}}{\sqrt{1 - x^4}}dx$$;
  • A. $$I=\log|x-\sqrt{1+x^2}|+\sin^{-1}x+c$$
  • B. $$I=\log|x+\sqrt{1+x^2}|-\sin^{-1}x+c$$
  • C. None of these
  • D. $$I=\log|x+\sqrt{1+x^2}|+\sin^{-1}x+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer