Mathematics

# The value of intergral$\int_{\pi \4}^{3\\pi }\frac{x}{1+4x}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Evaluate
$\int \dfrac{\log (1+x)}{(1+x)}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
The value of $\int_{0}^{\pi} \dfrac{\sin \left(n+\dfrac{1}{2}\right) x}{\sin \left(\dfrac{x}{2}\right)} d x$  is, $n \in I, n \geq 0$
• A. $\dfrac{\pi}{2}$
• B.
• C. $2\pi$
• D. $\pi$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate : $\sqrt{\dfrac{2 - x}{x}} \, (0 < x < 2)$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The value of the integral $\displaystyle \int_{0}^{\pi /2}\dfrac{\sin x+\cos x}{e^{x-\frac{\pi }{4}}+1}dx$ is
• A. $0$
• B. $2$
• C. $4$
• D. $1$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$