Mathematics

The value of integral $$\underset{0}{\overset{50 \pi}{\int}} \sqrt{1 + cos 2x} dx$$ is 


ANSWER

$$50 \sqrt{2}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$n\overset{Lt}{\rightarrow}\infty \displaystyle \{\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{6n}\}=$$
  • A. log 2
  • B. log 3
  • C. log 5
  • D. log 6

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
If $$ \displaystyle f(x)=\lim_{n\rightarrow \infty }(2x+4x^{3}+......+2^{n}x^{2n-1})\left ( 0<x<\frac{1}{\sqrt{2}} \right )$$, then the value of $$\displaystyle\int f(x) dx$$ is equal to
$$\textbf{Note}$$: $$c$$ is the constant of integration.
  • A. $$ \displaystyle \log\left ( \frac{1}{\sqrt{1-x^{2}}} \right )+c$$
  • B. $$ \displaystyle \log\sqrt{1-2x^{2}+x} + c$$
  • C. None of these
  • D. $$ \displaystyle \log\left ( \frac{1}{\sqrt{1-2x^{2}}} \right )+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\dfrac{3x+7}{x^{2}-3x+2}=$$
  • A. $$\displaystyle \frac{5}{x-1}+\frac{8}{x-2}$$
  • B. $$\displaystyle \frac{8}{x-1}+\frac{5}{x-2}$$
  • C. $$\displaystyle \frac{2}{x-1}+\frac{3}{x-2}$$
  • D. $$\displaystyle \frac{13}{x-2}-\frac{10}{x-1}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle \int \frac{1}{\sqrt{\left ( x \right )}\left [ \sqrt{\left ( x \right )}+1 \right ]}dx.$$
  • A. $$\displaystyle 2\log \left ( 1-\sqrt{x} \right ).$$
  • B. $$\displaystyle \log \left ( 1+\sqrt{x} \right ).$$
  • C. $$\displaystyle \sqrt{2}\log \left ( 1+\sqrt{x} \right ).$$
  • D. $$\displaystyle 2\log \left ( 1+\sqrt{x} \right ).$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
Evaluate $$\displaystyle I_1=\int_0^{\displaystyle\frac{\pi}{2}}{\cos{(\pi\sin^2{x})}dx}$$ $$\displaystyle$$
  • A. $$\pi$$
  • B. $$\dfrac{\pi}{2}$$
  • C. none of the above.
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer