Mathematics

# The value of $\int x\sqrt{x+x^{2}}dx$ is :

The value of $\int x\sqrt{x+x^{2}}dx$ is :
$\dfrac { 1 }{ 3 } \left( x^{ 2 }+x \right) ^{ 3/2 }-\dfrac { 1 }{ 4 } \left[ \left( x+\dfrac { 1 }{ 2 } \right) \sqrt { { x }^{ 2 }+x } -\dfrac { 1 }{ 4 } \log { \left( x+\dfrac { 1 }{ 2 } +\dqrt { { x }^{ 2 }+x } \right) } \right] +C$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Evaluate:
$\displaystyle \int \dfrac{1}{(2x - 7)} \sqrt{(x - 3)(x - 4)}\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\displaystyle\int \left(e^x\right)^2 e^x dx$ is equal to

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int \sqrt{\left(\dfrac{1-\sqrt{x}}{1+\sqrt{x}}\right)}dx$ is equal to
• A. $\cos^{-1}\sqrt{x}-\sqrt{1-x}(\sqrt{x}-2)+c$
• B. $\cos^{-1}\sqrt{x}+\sqrt{1+x}(\sqrt{x}+2)+c$
• C. $-2\sqrt{1-x}-\sin^{-1}\sqrt{x}+\sqrt{x+x^{2}}+D$
• D. $\cos^{-1}\sqrt{x}+\sqrt{1-x}(\sqrt{x}-2)+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate: $\int\limits_0^{\dfrac{\pi }{2}} {\cos x\;{e^{\sin x}}\;{\text{dx}}}$

Find the integrals of the functions    $\sin^2(2x+5)$