Mathematics

# The value of $\int { \sin { x } \log { \left( \cot { \dfrac { x }{ 2 } } \right) } } dx$ is

##### SOLUTION
Put, $\log(\cot \dfrac{x}{2}) = t$

$\implies \dfrac{1}{2}\dfrac{1}{\cot \dfrac{x}{2}} (- \csc^{2} \dfrac{x}{2}) dx = dt$

$\implies \dfrac{-1}{2} (\tan \dfrac{x}{2} )\left(\dfrac{1}{\sin^{2} \dfrac{x}{2}}\right) dx = dt$

$\implies \dfrac{- 1}{2\sin \dfrac{x}{2} \cos \dfrac{x}{2}} dx = dt$

$\implies \dfrac{-1}{\sin x} dx = dt$

Now, $\int \dfrac{\log \left(\cot \dfrac{x}{2}\right)}{\sin x} dx = \int - t dt$

$= - \dfrac{t^2}{2} + c$

$= - \dfrac{1}{2} \log \left(\cot \dfrac{x}{2}\right) + c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Solve:
$\displaystyle\int \dfrac{x^{4}+1}{x^{6}+1}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve:$\int _{ 0 }^{ \log { 2 } }{ \cos { 2x } dx }$=

1 Verified Answer | Published on 17th 09, 2020

Q3 One Word Medium
Solve $\displaystyle\int \dfrac{ { e }^{ 2x }-{ e }^{ -2x } }{ { e }^{ 2x }+{ e }^{ -2x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\int \sqrt {1 + \sin x}dx =$
• A. $\dfrac {1}{2}\left (\sin \dfrac {x}{2} + \cos \dfrac {x}{2}\right ) + c$
• B. $\dfrac {1}{2}\left (\sin \dfrac {x}{2} - \cos \dfrac {x}{2}\right ) + c$
• C. $2\sqrt {1 + \sin x} + c$
• D. $-2\sqrt {1 - \sin x} + c$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$