Mathematics

The value of $$\int_{0}^{[x]} (x-[x])dx$$, where $$[x]$$ is the greatest integer $$|le x$$ is equal to


ANSWER

$$4[x]$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 One Word Medium
 $$\int { \frac { 2x+3 }{ 3x+2 } dx } $$=$$\dfrac{A}{3}x+\dfrac{B}{3}ln(3x+2)+c$$
Find value of B-A

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\int _ { - 4 } ^ { - 5 } e ^ { ( x + 5 ) ^ { 2 } } d x + 3 \int _ { 1 / 3 } ^ { 2 / 3 } e ^ { 9 ( x - 2 / 3 ) ^ { 2 } } d x$$ is equal to-
  • A. $$e ^ { 5 }$$
  • B. $$e ^ { 4 }$$
  • C.
  • D. 3$$e ^ { 2 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
The value of $$\displaystyle \underset{0}{\overset{x}{\int}} \dfrac{(t - |t|)^2}{(1 + t^2)} dt$$ is equal to 
  • A. $$0 \, if \, x > 0$$
  • B. $$\ln ( 1 + x^3) \, \ \text{if} \, x > 0 $$
  • C. $$4(x + \tan^{-1} x ) \, \text{if} \, x < 0$$
  • D. $$4(x - \tan^{-1} x), \, \ \text{if} \, x < 0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Evaluate : $$\displaystyle \int \sec x\tan x\sqrt{\sec ^{2}x+1}dx.$$
  • A. $$\displaystyle \frac{1}{2}t\sqrt{t^{2}+1}-\frac{1}{2}\log \left [ t+\sqrt{t^{2}+1} \right ].$$ where $$t=\sec x$$
  • B. $$\displaystyle t\sqrt{t^{2}+1}+\log \left [ t+\sqrt{t^{2}+1} \right ].$$ where $$t=\sec x$$
  • C. $$\displaystyle \frac{1}{2}t\sqrt{t^{2}+1}+\frac{1}{2}\log \left [ t-\sqrt{t^{2}+1} \right ].$$ where $$t=\sec x$$
  • D. $$\displaystyle \frac{1}{2}t\sqrt{t^{2}+1}+\frac{1}{2}\log \left [ t+\sqrt{t^{2}+1} \right ].$$ where $$t=\sec x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
$$\displaystyle \lim_{n\rightarrow \infty} \left (\dfrac {(n + 1) (n + 2) .....3n}{n^{2n}} \right )^{\frac {1}{n}}$$ is equal to:
  • A. $$\dfrac {18}{e^{4}}$$
  • B. $$\dfrac {9}{e^{2}}$$
  • C. $$3\log 3 - 2$$
  • D. $$\dfrac {27}{e^{2}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer