Mathematics

# The value of ${\in}_{0}^{1}\dfrac{dx}{x+\sqrt{1-x^{2}}}$ is

$\dfrac{\pi}{3}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int \left [ \left ( 1+x \right )e^{x}f\left ( x \right )+xe^{x}f'\left ( x \right ) \right ]dx=e^{x},$ then $\displaystyle f\left ( x \right )=$
• A. $1$
• B. $x$
• C. $\displaystyle e^{x}$
• D. $1/x$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate:$\displaystyle \int_{1}^{2} \dfrac {x}{(x+1)(x+2)}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate $\sin \left( {ax + b} \right)\cos \left( {ax + b} \right)$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate : $\displaystyle\int^2_{-2}|x|dx$
• A. $3.5$
• B. $2$
• C. $0$
• D. $4$

$\int \dfrac { { e }^{ x }\left( 1+x \right) }{ \cos ^{ 2 }{ \left( { xe }^{ x } \right) } }dx$