Mathematics

The value of $$\displaystyle \int { { e }^{ x }\frac { 1+n{ x }^{ n-1 }-{ x }^{ 2n } }{ \left( 1-{ x }^{ n } \right) \sqrt { 1-{ x }^{ 2n } }  } dx } $$ is 


ANSWER

$$\displaystyle { e }^{ x }\frac { \sqrt { 1-{ x }^{ 2n } } }{ 1-{ x }^{ n } } +c$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The value of integratin $$\displaystyle \int x\sec^{-1}xdx$$ is
  • A. $$\dfrac{1}{2}x^{2}\sec^{-1}x+\displaystyle \frac{1}{2}\sqrt{x^{2}-1}+c$$
  • B. $$x^{2}\sec^{2}x+\displaystyle \frac{1}{2}\sqrt{x^{2}-1}+c$$
  • C. $$x^{2}\sec^{2}x-\dfrac{1}{2}\sqrt{x^{2}-1}+c$$
  • D. $$\displaystyle \frac{1}{2}x^{2}\sec^{-1}x-\frac{1}{2}\sqrt{x^{2}-1}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Integrate the following functions w.r.t $$X :(5-3x)(2-3x)^{-\dfrac{1}{2}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Solve:$$\int(1-\cos x)cosec^2 x dx=$$ ?

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
The value of  $$\displaystyle\int_{0}^{\infty }e^{-ax}\sin (bx) \ dx$$ equals? 
  • A. $$\displaystyle \frac{1}{a^{^{2}}+b^{2}}$$
  • B. $$\displaystyle \frac{a}{a^{^{2}}+b^{2}}$$
  • C. $$\displaystyle \frac{1}{b} $$
  • D. $$\displaystyle\frac{b}{a^{2}+b^{2}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$n \space\epsilon \space N$$ & the A.M., G.M., H.M. & the root mean square of $$n$$ numbers $$2n+1, 2n+2, ...,$$ up to $$n^{th}$$ number are $$A_{n}$$, $$G_{n}$$, $$H_{n}$$ and $$R_{n}$$ respectively. 
On the basis of above information answer the following questions

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer