Mathematics

# The value of $\displaystyle\int \dfrac{x^2+5x-1}{\sqrt{x}}dx$ equals?

##### SOLUTION

Consider the given integration,

$\Rightarrow \int{\dfrac{{{x}^{2}}+5x-1}{\sqrt{x}}}dx$

$\Rightarrow \int{\left( \dfrac{{{x}^{2}}}{\sqrt{x}}+\dfrac{5x}{\sqrt{x}}-\dfrac{1}{\sqrt{x}} \right)}dx$

$\Rightarrow \left( \int{{{x}^{\dfrac{3}{2}}}}+5.{{x}^{\dfrac{1}{2}}}-2{{x}^{-\dfrac{1}{2}}} \right)dx$

$\Rightarrow \dfrac{{{x}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}+5.\dfrac{{{x}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}-\dfrac{{{x}^{\dfrac{1}{2}}}}{\dfrac{1}{2}}+C$

$\Rightarrow \dfrac{2}{5}.{{x}^{\dfrac{5}{2}}}+\dfrac{10}{3}.{{x}^{\dfrac{3}{2}}}-{{x}^{\dfrac{1}{2}}}+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
If $\displaystyle f(x)=\lim_{n\rightarrow \infty }(2x+4x^{3}+......+2^{n}x^{2n-1})\left ( 0<x<\frac{1}{\sqrt{2}} \right )$, then the value of $\displaystyle\int f(x) dx$ is equal to
$\textbf{Note}$: $c$ is the constant of integration.
• A. $\displaystyle \log\left ( \frac{1}{\sqrt{1-x^{2}}} \right )+c$
• B. $\displaystyle \log\sqrt{1-2x^{2}+x} + c$
• C. None of these
• D. $\displaystyle \log\left ( \frac{1}{\sqrt{1-2x^{2}}} \right )+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $\displaystyle \int \dfrac{dx}{\sqrt{\sin^3 x \cos^5 x}} = a \sqrt{\cot x } + b \sqrt {\tan^3x} + c$ where c is an arbitrary constant of integration then the values of $'a'$ and $'b'$ are respectively :
• A. $2$ & $-\dfrac{2}{3}$
• B. $2$ & $\dfrac{2}{3}$
• C. None of these
• D. $-2$ & $\dfrac{2}{3}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Consider the integrals
$A=\overset { \pi }{ \underset { 0 }{ \int } }\dfrac{\sin x dx}{\sin x + \cos x}$ and $B=\overset { \pi }{ \underset { 0 }{ \int } }\dfrac{\sin x dx}{\sin x-\cos x}$
Which one of the following is correct?
• A. $A=2B$
• B. $B=2A$
• C. $A=3B$
• D. $A=B$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Let $I=\displaystyle \int _{ \pi /4 }^{ \pi /3 }{ \cfrac { \sin { x } }{ x } } dx$. Then?
• A. $\cfrac { 1 }{ 2 } \le I\le 1\quad$
• B. $4\le I\le 2\sqrt { 30 }$
• C. $1\le I\le \cfrac { 2\sqrt { 3 } }{ \sqrt { 2 } }$
• D. $\cfrac { \sqrt { 3 } }{ 8 } \le I\le \cfrac { \sqrt { 2 } }{ 6 }$

Let $g(x)$ be a function defined on $[0, 7]$ and $g(x)=\int_0^x f(t) dt$, where $y=f(x)$ is the function whose graph is as shown in figure given below, then