Mathematics

The value of $$\displaystyle\int _{ 0 }^{ \infty  }{ \frac { \log { x }  }{ { a }^{ 2 }+{ x }^{ 2 } } dx } $$


ANSWER

$$\dfrac{2\pi \log a}{a}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Solve:
$$\displaystyle \int_{0}^{2\pi}{e^{x}.\sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)dx}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
If $$\int{ e }^{ x }\dfrac { 1-\sin { x }  }{ 1-\cos { x }  } dx=f\left( x \right) +$$ constant, then $$f\left( x \right) $$ is equal to 
  • A. $${ e }^{ x }\cot { \dfrac { x }{ 2 } } +c$$
  • B. $${ e }^{ -x }\cot { \dfrac { x }{ 2 } } +c$$
  • C. $$-{ e }^{ -x }\cot { \dfrac { x }{ 2 } } +c$$
  • D. $$-{ e }^{ x }\cot { \dfrac { x }{ 2 } } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Hard
Find the value of $$\displaystyle\int _{ 0 }^{ 2\pi  }{ \sin ^{ 2 }{ x } \cdot \cos ^{ 4 }{ x } dx } $$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle \int\frac{sin^{2}x}{1-cosx}$$ $$dx=$$
  • A. $$xsinx+c $$
  • B. $$x-sinx+c$$
  • C. $$ x^{2}\sin x+c$$
  • D. $$ x+sinx+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer