Mathematics

# The value of $\displaystyle \underset{0}{\overset{x}{\int}} \dfrac{(t - |t|)^2}{(1 + t^2)} dt$ is equal to

$4(x - \tan^{-1} x), \, \ \text{if} \, x < 0$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate the following integrals:
$\int { \sqrt { 1+x-2{ x }^{ 2 } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate: $\displaystyle\int \:\dfrac{cos\:x+sin\:x}{\sqrt{sin\:2x}}\:dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following integral:
$\displaystyle\int^{\pi/6}_0\dfrac{\cos x}{(3+4\sin x)}dx$.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $g\left( x \right) =\int { { x }^{ x }\log _{ e }{ (ex)dx } }$ then  $g\left( \pi \right)$ equals
• A. $\pi \log _{ e }{ \pi }$
• B. ${ \pi }^{ \pi }\log _{ e }{ (e\pi } )$
• C. ${ \pi }^{ \pi }\log _{ e }{ (\pi } )$
• D. ${\pi}^\pi$

Evaluate $\int \dfrac{ \sin v}{v^2 \cos v+ \cos v}dv$