Mathematics

The value of $$\displaystyle \overset{\pi/2}{\underset{0}{\int}} \left(\sqrt{1 + 8 \sin^3 x} + (-2 \cos 2x + 4 \sin x + 2)^{\dfrac{1}{3}}\right)\cos x \,dx$$ is equal to


ANSWER

$$3$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Solve:
$$\int { \dfrac { dx }{ x({ x }^{ 7 }+1) }  } =$$ ?

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
lf $$\displaystyle \int\frac{1}{1+\cot x}dx=_{A}$$ Iog $$|Sinx+$$ Cos $$x|+$$ Bx $$+c$$, then $$A=\ldots\ldots..,\ B=\ldots\ldots\ldots.$$,
  • A. $$-1, 1$$
  • B. $$\displaystyle \frac{1}{3},\frac{1}{2}$$
  • C. $$\displaystyle \frac{-1}{3},\frac{1}{2}$$
  • D. $$-\displaystyle \frac{1}{2},\frac{1}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$g(x)$$ is a differentiable function satisfying $$\dfrac{d}{dx}{g(x)}=g(x)$$ and $$g(0)=1,$$ then $$\int { g\left( x \right)  } \left( \dfrac { 2-sin2x }{ 1-cos2x }  \right) dx$$ is equal to 
  • A. $$-g(x)cot$$ $$x+C$$
  • B. $$\dfrac{g(x)}{1-cos2x}+C$$
  • C. $$None$$ $$of$$ $$these$$
  • D. $$g(x)cot$$ $$x+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
The value of $$\displaystyle\int \dfrac{\cos\ 2\ x}{\cos\ x}\ dx$$ is equal to
  • A. $$2\ \sin\ x-\ell\ n|\sec\ x-\tan\ x|\ + C$$
  • B. $$2\ \sin\ x+\ell\ n|\sec\ x+\tan\ x|\ + C$$
  • C. $$\ \sin\ x-\ell\ n|\sec\ x+\tan\ x|\ + C$$
  • D. $$2\ \sin\ x-\ell\ n|\sec\ x+\tan\ x|\ + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
Let $$\displaystyle I_1 = \int_1^2 \frac{1}{\sqrt{1 + x^2}} dx$$ and $$I_2 \displaystyle = \int_1^2 \frac{1}{x} dx$$. Then
  • A. $$I_1 > I_2$$
  • B. $$I_1 = I_2$$
  • C. $$I_1 > 2 I_2$$
  • D. $$I_2 > I_1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer