Mathematics

# The value of $\displaystyle \int \tan^{2}\ xdx$ equals

$\tan x+x+c$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
$\int _{ 0 }^{ k }{ \dfrac { 1 }{ 2+{ 8x }^{ 2 } } dx=\dfrac { \pi }{ 16 } }$, find the value of $K$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate:  $\int \frac { t ^ { 4 } d t } { \sqrt { 1 - t ^ { 2 } } }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Multiple Correct Hard
If $\displaystyle \int \frac{\displaystyle \sec x-\tan x}{\sqrt{\displaystyle \sin^2 x-\sin x}} dx=k \ln |f(x)+\sqrt{2}\sqrt{\tan x(\tan x-\sec x)}| + c$, where $c$ is arbitrary constant and $k$ is a fixed constant, then
• A. $k=\displaystyle \frac{1}{\sqrt{2}}$
• B. $f(x)=\sqrt{\tan x+ \sec x}$
• C. $k=\sqrt{2}$
• D. $f(x)=\tan x-\sec x$

1 Verified Answer | Published on 17th 09, 2020

Q4 One Word Medium
Solve the equation:-
$\int_{-2}^{2}\ x\ e^{\ \left | x \right |}\ dx$

$\int {\dfrac {\cos 2x}{\sin x}}dx$