Mathematics

The value of $$\displaystyle \int \dfrac {\sin^{6}x+\cos^{6}x}{\sin^{2}x.\cos^{2}x}dx$$ equals


ANSWER

$$-(\tan x+\cot x)+c$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\int { \cfrac { \cos { x }  }{ \sqrt { 4-\sin ^{ 2 }{ x }  }  }  } dx=$$?
  • A. $$\sin ^{ -1 }{ \left( \cfrac { x }{ 2 } \right) } +C$$
  • B. $$\sin ^{ -1 }{ \left( \cfrac { 1 }{ 2 } \cos { x } \right) } +C$$
  • C. $$\cfrac { 1 }{ 2 } \sin ^{ -1 }{ \left( 2\sin { x } \right) } +C$$
  • D. $$ \sin ^{ -1 }{ \left( \cfrac { 1 }{ 2 } \sin { x } \right) } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Solve  $$\displaystyle\int {\dfrac{x}{{9 - 4{x^2}}}dx}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate the following integral as limit of sum:
$$\displaystyle \int_{a}^{b}x\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Find $$\displaystyle \int \sqrt {1 + \cos2x} dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\displaystyle \int \dfrac{1}{x^2 (x^4 + 1)^{\frac{3}{4}}}dx$$ is equal to
  • A. $$-\dfrac{(1 + x^4)^{\frac{3}{4}}}{x} + C$$
  • B. $$-\dfrac{(1 + x^4)^{\frac{1}{4}}}{2x} + C$$
  • C. $$-\dfrac{(1 + x^4)^{\frac{1}{4}}}{x^2} + C$$
  • D. $$-\dfrac{(- 1 + x^4)^{\frac{1}{2}}}{x} + C$$
  • E. $$-\dfrac{(1 + x^4)^{\frac{1}{4}}}{x} + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer