Mathematics

The value of $$\displaystyle \int _{ -\dfrac { \pi  }{ 2 }  }^{ 2 }{ \dfrac { \sin ^{ 2 }{ x }  }{ 1+{ 2 }^{ x } }  } dx$$ is:


ANSWER

$$\dfrac {\pi}{4}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The integral $$\displaystyle\int \dfrac{dx}{x^2(x^4+1)^{3/4}}$$ equals?
  • A. $$(x^4+1)^{1/4}+C$$
  • B. $$-(x^4+1)^{1/4}+C$$
  • C. $$-\left(\dfrac{x^4+1}{x^4}\right)^{1/4}+C$$
  • D. $$\left(\dfrac{x^4+1}{x^4}\right)^{1/4}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\displaystyle \int \dfrac{\sec^2 x}{(\sec x + \tan  x)^{9/2}} dx$$ equals
  • A. $$- \dfrac{1}{(\sec x + \tan x)^{11/2}} \left \{ \dfrac{1}{11} - \dfrac{1}{7} (\sec x + \tan x)^2 \right \} + K$$
  • B. $$\dfrac{1}{(\sec x + \tan x)^{11/2}} \left \{ \dfrac{1}{11} - \dfrac{1}{7} (\sec x + \tan x)^2 \right \} + K$$
  • C. None of the above
  • D. $$-\dfrac{1}{(\sec x + \tan x)^{11/2}} \left \{ \dfrac{1}{11} + \dfrac{1}{7} (\sec x + \tan x) \right \} + K$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
The value of $$\int { { x }^{ 3 }\log { x } dx } $$ is
  • A. $$\dfrac { 1 }{ 8 } \left( { x }^{ 4 }\log { x } -4{ x }^{ 4 }+c \right) $$
  • B. $$\dfrac { 1 }{ 16 } \left( 4{ x }^{ 4 }\log { x } +{ x }^{ 4 }+c \right) $$
  • C. $$\dfrac { { x }^{ 4 }\log { x } }{ 4 } +c$$
  • D. $$\dfrac { 1 }{ 16 } \left( 4{ x }^{ 4 }\log { x } -{ x }^{ 4 }+c \right) $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate:$$\displaystyle\int{\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}\dfrac{dx}{x}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
If $$\displaystyle I = \int tan^{-1} \sqrt {\left ( \sqrt x - 1 \right )} dx = (u^2 + 1)^2 tan^{-1} u - \frac {A}{1863} u^3 - u + C$$ where $$\displaystyle u = \sqrt {\sqrt x - 1}$$ then A is equal to.
  • A. 312
  • B. 316
  • C. 318
  • D. 321

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer