Mathematics

The value of $$\displaystyle \int_{-1}^{1}\dfrac{\cot^{-1}\ x}{\pi}\ dx$$ is


ANSWER

$$1$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\int { { (cosx) }^{ 4 } } dx=Ax+Bsin2x+Csin4x$$ then {A,B,C) equals
  • A. $$\left\{ \frac { 3 }{ 8 } ,\frac { 1 }{ 2 } ,\frac { 1 }{ 6 } \right\} $$
  • B. $$\left\{ \frac { 3 }{ 4 } ,\frac { 1 }{ 4 } ,\frac { 1 }{ 16 } \right\} $$
  • C. $$\left\{ \frac { 3 }{ 8 } ,\frac { 1 }{ 4 } ,\frac { 1 }{ 32 } \right\} $$
  • D. $$\left\{ \frac { 3 }{ 8 } ,\frac { 1 }{ 4 } ,\frac { 1 }{ 32 } \right\} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int(\tan x+\log(\sec x)).e^{x}dx=$$
  • A. $$ \log(\sec x)+c$$
  • B. $$ \tan x.e^{x}+c$$
  • C. $$-e^{x}\log(\sec x)+c$$
  • D. $$ e^{x}$$. log(Secx)$$+$$c

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\lim _{ n\rightarrow \infty  }{ \dfrac { \left( { 1 }^{ k }+{ 2 }^{ k }+{ 3 }^{ k }+.....+{ n }^{ k } \right)  }{ \left( { 1 }^{ 2 }+{ 2 }^{ 2 }+.....+{ n }^{ 2 } \right) \left( { 1 }^{ 3 }+{ 2 }^{ 3 }+.....+{ n }^{ 3 } \right)  }  }=F(k)$$, then $$(k\in N)$$
  • A. $$F(5)=0$$
  • B. $$F(6)=\dfrac{12}{7}$$
  • C. $$F(6)=\dfrac{5}{7}$$
  • D. $$F(k)\ is\ finite\ for \ k \le 6$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
If $$\displaystyle\int{\frac{dx}{(x^2+1)(x^2+4)}}=k\tan^{-1}{x}+l\tan^{-1}{\frac{x}{2}}+C$$, then
  • A. $$\displaystyle k=\frac{1}{3}$$
  • B. $$\displaystyle l=\frac{2}{3}$$
  • C. $$\displaystyle l=-\frac{1}{6}$$
  • D. $$\displaystyle k=-\frac{1}{3}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer