Mathematics

The value of $$\displaystyle \int _{ 0 }^{ \pi/2}{ \dfrac { { e }^{ \cos { x }  } }{ { e }^{ \cos { x }  }+{ e }^{ -\cos { x }  } }  }$$ dx is


ANSWER

$$\dfrac{\pi}{4}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\displaystyle \int e^x \sec x(1+\tan x)dx$$
  • A. $$e^x\cos x+C$$
  • B. $$e^x\sin x+C$$
  • C. $$e^x\tan x+C$$
  • D. $$e^x\sec x+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Solve: $$\int tan (x)dx=?$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$f\left( x \right) =\frac { x }{ 1+(\ln { x } )(\ln { x } ).....\infty  } \vee x\in [1,\infty )\quad then\quad \int _{ 1 }^{ 2e }{ f\left( x \right) dx } $$ equals is :
  • A. $$\frac { { e }^{ 2 }+1 }{ 2 } $$
  • B. $$\frac { { e }^{ 2 }-2e }{ 2 } $$
  • C. None of these
  • D. $$\frac { { e }^{ 2 }-1 }{ 2 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
lf $$\displaystyle \int\frac{2x^{2}+3}{(x^{2}-1)(x^{2}+4)}dx=a\log(\frac{x-1}{x+1})+b\tan^{-1}(\frac{x}{2})+c$$, then values of a and $$b$$ are
  • A. $$(1, -1)$$
  • B. $$(-1,1)$$
  • C. $$\displaystyle (\frac{1}{2},-\frac{1}{2})$$
  • D. $$\displaystyle (\frac{1}{2},\frac{1}{2})$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
$$\int \frac{2x^{2}}{3x^{4}2x} dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer