Mathematics

# The value of $\cfrac { \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x } \right) }^{ \sqrt { 3 } +1 } } dx }{ \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x } \right) }^{ \sqrt { 3 } -1 } } }$ is

$\cfrac { \sqrt { 3 } +1 }{ \sqrt { 3 } -1 }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Hard
$\int { (tanx-cotx) }^2dx$ =
• A. $tanx$ $+$ $x$ $+$ $c$
• B. $tanx$ $-$ $x$ $+$ $c$
• C. $tanx$ $-$ $cotx$ $+$ $c$
• D. $tanx$ $-$ $cotx$ $-4x$ $+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int\frac{3x-4}{\sqrt{2x^{2}+4x+5}}dx=$
• A. $\displaystyle \frac{3}{2}\displaystyle \sqrt{2x^{2}+4x+5}+\frac{7}{\sqrt{2}}\sin h^{-1}(\frac{\sqrt{2}(x+1)}{\sqrt{3}})-c$
• B. $\displaystyle \frac{2}{3}\displaystyle \sqrt{2x^{2}-4x-5}+\frac{7}{\sqrt{2}}\sin h^{-1}(\frac{\sqrt{2}(x+1)}{\sqrt{3}})+c$
• C. $\displaystyle \frac{3}{2}\displaystyle \sqrt{2x^{2}+4x+5}-\frac{7}{\sqrt{2}}\sin h^{-1}(\frac{\sqrt{2}(x-1)}{\sqrt{3}})-c$
• D. $\displaystyle \frac{3}{2}\displaystyle \sqrt{2x^{2}+4x+5}-\frac{7}{\sqrt{2}}\sin h^{-1}(\frac{\sqrt{2}(x+1)}{\sqrt{3}})+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\int {\dfrac{{dx}}{{\left( {x + 1} \right)\sqrt {x - 2} }}}$ is equal to

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
$\displaystyle \int \dfrac{(\ell n x)^{2}}{x}.dx$

$\displaystyle \int _{ 0 }^{ 1 }{ x{ \left( \tan ^{ -1 }{ x } \right) }^{ 2 } } dx$