Mathematics

The value of $$\cfrac { \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x }  \right)  }^{ \sqrt { 3 } +1 } } dx }{ \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x }  \right)  }^{ \sqrt { 3 } -1 } }  } $$ is


ANSWER

$$\cfrac { \sqrt { 3 } +1 }{ \sqrt { 3 } -1 } $$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\int { (tanx-cotx) }^2dx$$ =  
  • A. $$tanx$$ $$+$$ $$x$$ $$+$$ $$c$$
  • B. $$tanx$$ $$-$$ $$x$$ $$+$$ $$c$$
  • C. $$tanx$$ $$-$$ $$cotx$$ $$+$$ $$c$$
  • D. $$tanx$$ $$-$$ $$cotx$$ $$-4x$$ $$+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int\frac{3x-4}{\sqrt{2x^{2}+4x+5}}dx=$$
  • A. $$\displaystyle \frac{3}{2}\displaystyle \sqrt{2x^{2}+4x+5}+\frac{7}{\sqrt{2}}\sin h^{-1}(\frac{\sqrt{2}(x+1)}{\sqrt{3}})-c$$
  • B. $$\displaystyle \frac{2}{3}\displaystyle \sqrt{2x^{2}-4x-5}+\frac{7}{\sqrt{2}}\sin h^{-1}(\frac{\sqrt{2}(x+1)}{\sqrt{3}})+c$$
  • C. $$\displaystyle \frac{3}{2}\displaystyle \sqrt{2x^{2}+4x+5}-\frac{7}{\sqrt{2}}\sin h^{-1}(\frac{\sqrt{2}(x-1)}{\sqrt{3}})-c$$
  • D. $$\displaystyle \frac{3}{2}\displaystyle \sqrt{2x^{2}+4x+5}-\frac{7}{\sqrt{2}}\sin h^{-1}(\frac{\sqrt{2}(x+1)}{\sqrt{3}})+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
$$\int {\dfrac{{dx}}{{\left( {x + 1} \right)\sqrt {x - 2} }}} $$ is equal to 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
$$\displaystyle \int \dfrac{(\ell n x)^{2}}{x}.dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Hard
$$\displaystyle \int _{ 0 }^{ 1 }{ x{ \left( \tan ^{ -1 }{ x }  \right)  }^{ 2 } } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer