Mathematics

# The value of $2\displaystyle \int \sin x \text{ cosec } 4x\ dx$ is equal to:

$\dfrac{1}{2\sqrt2}\ln \left|\dfrac{1+\sqrt2\sin x}{1-\sqrt2\sin x}\right|- \dfrac{1}{4}\ln \left|\dfrac{1+\sin x}{1-\sin x}\right|+c$

##### SOLUTION
$Q \displaystyle \int 2\sin x\, cosec\, 4 x dx$

$\displaystyle = \int \frac{2 \sin x}{\sin 4x}dx = \int\frac{2\sin x}{2\sin 2x\cos 2x}dx$

$\displaystyle = \int \frac{2 \sin x}{2 \sin x \cos x \cos 2x}dx$

$\displaystyle = \frac{1}{2} \int \frac{1}{\cos x \cos 2 x}dx = \frac{1}{2} \int \frac{\cos x}{(\cos^2 x)(1-2 \sin^2 x)}dx$

$\displaystyle = \frac{1}{2} \int \frac{\cos x}{(1-\sin^2 x)(1-2 \sin^2 x)}dx$

put $\sin x = t$
$\cos x\, dx = dt$
$\displaystyle = \frac{1}{2} \int\frac{1}{(1-t^2)(1-2t^2)}dt$

$\displaystyle = \frac{1}{2} \int \frac{2(1-t^2)-(1-2t^2)}{2(1-t^2)(1-2t^2)}dt$

$\displaystyle = \frac{1}{4} \int \frac{1}{(1-2t^2)}dt - \frac{1}{2} \int\frac{1}{(1-t^2)}dt$

$\displaystyle = \frac{1}{2} \frac{1}{2\sqrt {2}} ln \left| \frac{1+\sqrt{2}t}{1-\sqrt{2}t}\right| -\frac{1}{2}. \frac{1}{2} ln \left| \frac{1+t}{1-t}\right| +c$

$\displaystyle = \frac{1}{4 \sqrt{2}}ln \left| \frac{1+\sqrt{2}\sin x}{1- \sqrt{2}\sin x}\right| -\frac{1}{4} ln \left| \frac{1+\sin x}{1-\sin x}\right| +c$

Its FREE, you're just one step away

Single Correct Hard Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Subjective Medium

Evaluate the following definite integral:

$\displaystyle\int_{-1}^{1}5x^{4}\sqrt{x^{5}+1}\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the integrals as limit of sum $\int_{2}^{4}2^{x}\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate $\displaystyle\int_{0}^{1}\dfrac{\tan^{-1}x}{1+x^{2}} \ dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the following integral:
$\displaystyle \int_{0}^{2}(x^2+x)dx$

Let $n \space\epsilon \space N$ & the A.M., G.M., H.M. & the root mean square of $n$ numbers $2n+1, 2n+2, ...,$ up to $n^{th}$ number are $A_{n}$, $G_{n}$, $H_{n}$ and $R_{n}$ respectively.