Mathematics

# The solution for x of the equation $\displaystyle\int^x_{\sqrt{2}}\dfrac{dt}{t\sqrt{t^2-1}}=\dfrac{\pi}{2}$ is?

$- \sqrt2$

##### SOLUTION
$\displaystyle \int_{\sqrt 2}^{x} \dfrac {dt}{t\sqrt {t^2 -1}}=\dfrac {\pi}{2}$
Let $t=\sec \theta$
$dt=\sec \theta \tan \theta \ d\theta$
$\displaystyle \int_{\pi /4}^{\sec^{-1}x} \dfrac {\sec \theta \tan \theta d\theta}{\sec \theta \sqrt {\sec^2 \theta -1}} \ \Rightarrow \displaystyle \int_{\pi /4}^{\sec^{-1}\theta} \dfrac {\sec \theta \tan \theta d\theta }{\sec \theta \tan \theta }=\dfrac {\pi}{2}$
$\displaystyle \int_{\pi /4}^{\sec^{-1}x} d\theta =\dfrac {\pi}{2}$
$\sec^{-1}x-\dfrac {\pi}{4}=\dfrac {\pi}{2}$
$\sec^{-1}x=\dfrac {\pi}{2}+\dfrac {\pi}{4}\ \Rightarrow x=\sec \left (\dfrac {3\pi}{4}\right)$
$\boxed {x=-\sqrt 2}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
$\int {\frac{2x+5}{x^2+5x-3}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate: $\displaystyle \int\limits_3^5 {\frac{{{x^2}}}{{{x^2} - 4}}} dx$
• A. $2 + {\log _e}\left( {\frac{{15}}{7}} \right)$
• B. $2 + 4{\log _e}7 + 4{\log _e}5$
• C. $2 - {\tan ^{ - 1}}\left( {\frac{{15}}{7}} \right)$
• D. $2 - {\log _e}\left( {\frac{{15}}{7}} \right)$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate $\displaystyle\int_{0}^{1}\dfrac{2x}{1+x^{4}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$n\overset{Lt}{\rightarrow}\infty \displaystyle \{\frac{1}{2n+1}+\frac{1}{2n+2}+\frac{1}{2n+3}\ldots+\frac{1}{2n+n}\}$
• A. $\displaystyle \log_{e}(\frac{1}{3})$
• B. $\displaystyle \log_{e}(\frac{2}{3})$
• C. $\displaystyle \log_{e}(\frac{4}{3})$
• D. $\displaystyle \log_{e}(\frac{3}{2})$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Hard
The value of $\int _{ 0 }^{ { \sin }^{ 2 }x }{ { \sin }^{ -1 }\sqrt { t } dt+ } \int _{ 0 }^{ { \cos }^{ 2 }x }{ { \cos }^{ -1 }\sqrt { t }dt}$ is
• A. $\pi$
• B. $\dfrac { \pi }{ 4 }$
• C. $1$
• D. $\dfrac { \pi }{ 2 }$