Mathematics

# The number of integral solutions  $( x , y )$  of the equations  $x \sqrt { y } + y \sqrt { x } = 20$  and  $x \sqrt { x } + y \sqrt { y } = 65$  is :

$2$

##### SOLUTION
By trial and error method
Put $x=16,y=1$
in the same way $x=1,y=16$
The equation gets satisfied

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Solve $\displaystyle\int {\frac{{{x^3} + x + 1}}{{{x^4} + {x^2} + 1}}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate the following function with respect to $x$
$\dfrac{4x-6}{(x^{2}-3x+5)^{3/2}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\displaystyle \int _{ 0 }^{ \pi /2 }{ \log { \sin { x } dx= } }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\int_{0}^{\frac{\pi}{2}}\dfrac{\sin\ x-\cos\ x}{1+\sin x\ \cos\ x}dx$

$\displaystyle \int \dfrac { x ^ { 3 } } { ( x + 1 ) ^ { 2 } } d x$