Mathematics

The integral $$\displaystyle \int_{\dfrac{\pi}{12}}^{\dfrac{\pi}{4}}{\dfrac{8\cos 2x}{(\tan x+\cot x)^{3}}dx}$$ equals :


ANSWER

$$\dfrac{15}{128}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The integral $$\displaystyle\int { \dfrac { x+2 }{ \left( { x }^{ 2 }+3x+3 \right) \sqrt { x+1 }  }  } dx$$ is equal to 
  • A. $$\dfrac { 2 }{ \sqrt { 3 } } \tan ^{ -1 }{ \left[ -\dfrac { x }{ \sqrt { 3\left( x+1 \right) } } \right] } +C$$
  • B. $$\dfrac { 2 }{ \sqrt { 3 } } \cot ^{ -1 }{ \left[ -\dfrac { x }{ \sqrt { \left( x+1 \right) } } \right] } +C$$
  • C. $$\dfrac { 1 }{ \sqrt { 3 } } \cot ^{ -1 }{ \left[ -\dfrac { x\sqrt { 3 } }{ \sqrt { x+1 } } \right] } +C$$
  • D. $$\dfrac { 1 }{ \sqrt { 3 } } \tan ^{ -1 }{ \left[ -\dfrac { x }{ \sqrt { 3\left( x+1 \right) } } \right] } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
If $$l_{n}=\displaystyle \int{\dfrac{t^{n}}{1+t^{2}}}dt$$ then
  • A. $$l_{n+1}=\dfrac{t^{n+1}}{n+1}l_{n}$$
  • B. $$l_{n+1}=\dfrac{t^{n-1}}{n-1}l_{n}$$
  • C. $$l_{n21}=\dfrac{t^{n+1}}{n+1}l_{n}$$
  • D. $$l_{n+2}=\dfrac{t^{n}}{n}-nl_{n}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate $$\displaystyle \int e^{\sin x}\sin 2xdx$$
  • A. $$2e^{\sin x}(\sin x+1)+c$$
  • B. $$e^{\sin x}(\sin x+2)+c$$
  • C. $$e^{\sin x}(3\sin x -2)+c$$
  • D. $$e^{\sin x}(2\sin x-2)+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate :
$$\int { { sin }^{ 2 }x } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
If $$y=2^23^{2x}5^{-5}7^{-5}$$ then $$\dfrac{dy}{dx}=$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer