Mathematics

# The general solution of the differential equation $ydx+(2\sqrt{xy}-x)dy=0$ is?

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
If $\displaystyle \int f(x)dx =2\{f(x)\}^{3}+c {\it}$,  and $f(x) \neq 0$   then $f(x)$ is
• A. $\displaystyle \frac{x}{2}$
• B. $\displaystyle x^{3}$
• C. $\displaystyle \frac{1}{\sqrt{x}}$
• D. $\displaystyle \sqrt{\frac{x}{3}}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\text { Evaluate: } \int_{0}^{\pi / 2} \dfrac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x} d x$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\int_{0}^{1}{\dfrac{(x^{6}-x^{3})}{(2x^{3}+1)^{3}}dx}$ is equal to :
• A. $-\dfrac{1}{6}$
• B. $-\dfrac{1}{12}$
• C. $-\dfrac{1}{18}$
• D. $-\dfrac{1}{36}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate:
$\displaystyle\int{{(\ln x)}^{4}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Hard
Evaluate $\displaystyle\int_{\displaystyle\sqrt{\frac{(3a^2+b^2)}{4}}}^{\displaystyle\sqrt{\frac{(a^2+b^2)}{2}}}{\frac{x}{\sqrt{(x^2-a^2)(b^2-x^2)}}dx}$.
• A. $\displaystyle I=\frac{\pi}{6}$
• B. $\displaystyle I=\frac{\pi}{4}$
• C. $\displaystyle I=\frac{\pi}{2}$
• D. $\displaystyle I=\frac{\pi}{12}$