Mathematics

# $\text { Evaluate: } \displaystyle \int_{-\pi / 2}^{\pi / 2} \dfrac{\cos x}{1+e^{x}} \mathrm{d} \mathrm{x}$

##### SOLUTION
Let
$\begin{array}{l|c}I=\displaystyle \int_{-\pi / 2}^{\pi / 2} \dfrac{\cos x}{1+e^{x}} d x \\=\displaystyle \int_{-\pi / 2}^{0} \dfrac{\cos x}{1+e^{x}} d x+\displaystyle \int_{0}^{\pi / 2} \dfrac{\cos x}{1+e^{x}} d x \\=\displaystyle \int_{\pi / 2}^{0} \dfrac{\cos t}{1+e^{-t}}(-d t)+ \displaystyle \int_{0}^{\pi / 2} \dfrac{\cos x}{1+e^{x}} d x \hspace{3cm}[\text{Substituting }\ x=-t]\\=\displaystyle \int _6^{\pi / 2} \dfrac{\cos t}{1+\dfrac{1}{e^{t}}} d t+\displaystyle\int_{0}^{\pi / 2} \dfrac{\cos x}{1+e^{x}} d x=\displaystyle \int_{0}^{\pi / 2} \dfrac{e^{t} \cdot \cos t}{1+e^{t}} d t+\displaystyle \int_{0}^{\pi / 2} \dfrac{\cos x}{1+e^{x}} d x \\=\displaystyle \int_{0}^{\pi / 2} \dfrac{e^{x} \cdot \cos x}{1+e^{x}} d x+\displaystyle \int_{0}^{\pi / 2} \dfrac{\cos x}{1+e^{x}} d x \\=\displaystyle \int_{0}^{\pi / 2} \dfrac{\left(e^{x}+1\right) \cdot \cos x}{1+e^{x}} d x=\int_{0}^{\pi / 2} \cos x d x \\=\left[\sin\ x\right]_0^{\pi/2}\\=\sin \pi / 2-\sin 0 \\=1\end{array}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Subjective Hard
$\text { Evaluate: } \displaystyle \int_{0}^{\pi} \dfrac{4 x \sin x}{1+\cos ^{2} x} \mathrm{dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The value of $\displaystyle \lim_{n \rightarrow \infty} e^{\frac{3i}{n}} \cdot \dfrac{3}{n} = ?$
• A. $e^4 -1$
• B. $e^5 -1$
• C. $e^3 -2$
• D. $e^3 -1$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The integral   $\int \dfrac { \sin ^{ { 2 } } x\cos ^{ { 2 } } x }{ \left( \sin ^{ { 5 } } x+\cos ^{ { 3 } } x\sin ^{ { 2 } } x+\sin ^{ { 3 } } x\cos ^{ { 2 } } x+\cos ^{ { 5 } } x \right) ^{ { 2 } } } dx$   is equal to :
• A. $\dfrac { - 1 } { 1 + \cot ^ { 3 } x } + C$
• B. $\dfrac { 1 } { 3 \left( 1 + \tan ^ { 3 } x \right) } + C$
• C. $\dfrac { 1 } { 1 + \cot ^ { 3 } x } + C$
• D. $\dfrac { - 1 } { 3 \left( 1 + \tan ^ { 3 } x \right) } + C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate $\displaystyle\int^{\pi/2}_{\pi/4}\dfrac{dx}{1-\cos 2x}$.

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$