Mathematics

# Suppose for every integer $n, . \displaystyle \int_{n}^{n+1} f(x)dx=n^{2}$ The value of $\displaystyle \int_{-2}^{4} f(x)dx$ is :

$19$

##### SOLUTION

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Subjective Medium
Solve : $\int \dfrac{t^4 - 3 t^2 + 2}{t^2 (1 + t^2)} , dt$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\displaystyle \int _{ 0 }^{ \pi /2 }{ \log { \sin { x } dx= } }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate $\displaystyle \int [ \sqrt { \cot x } + \sqrt { \tan x } ] d x$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The value of $\displaystyle \int { \sqrt { \frac { a-x }{ a+x } dx } }$ is
• A. $\displaystyle a{ \sin }^{ -1 }\left( \frac { x }{ a } \right) -\sqrt { { a }^{ 2 }-{ x }^{ 2 } } +c$
• B. $\displaystyle a{ \cos }^{ -1 }\left( \frac { x }{ a } \right) +\sqrt { { a }^{ 2 }+{ x }^{ 2 } } +c$
• C. $\displaystyle { \sin }^{ -1 }\left( \frac { x }{ a } \right) +\sqrt { { a }^{ 2 }-{ x }^{ 2 } } +c$
• D. $\displaystyle a{ \sin }^{ -1 }\left( \frac { x }{ a } \right) +\sqrt { { a }^{ 2 }-{ x }^{ 2 } } +c$

Evaluate:$\displaystyle \int \frac{(3-2x)}{\sqrt{2+x-x^{2}}}dx$