Mathematics

# State whether the statement is ture/false. $\displaystyle \int _ { - \pi / 2 } ^ { \pi / 2 } \left( \frac { \sin x } { 1 - \cos x } \right) d x$=0

True

##### SOLUTION
$\displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\dfrac{\sin{x}}{1-\cos{x}}dx}$
$=\displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\dfrac{2\sin{\dfrac{x}{2}}\cos{\dfrac{x}{2}}}{2{\sin}^{2}{\dfrac{x}{2}}}dx}$
$=\displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\dfrac{\cos{\dfrac{x}{2}}}{\sin{\dfrac{x}{2}}}dx}$
$=\displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\cot{\dfrac{x}{2}}dx}$
$=2\left[\ln{\left|\sin{\dfrac{x}{2}}\right|}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$
$=2\left[\ln{\left|\sin{\dfrac{\pi}{4}}\right|}-\ln{\left|\sin{\dfrac{\pi}{4}}\right|}\right]=0$

Its FREE, you're just one step away

TRUE/FALSE Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
The value of $\displaystyle \int { \frac { dx }{ \sin { x } \cos { x } +3{ \cos }^{ 2 }x } }$ is
• A. $\displaystyle \log \left| \cos { x } +3 \right| +c$
• B. $\displaystyle \log \left| \sin { x } +3 \right| +c$
• C. $\displaystyle \log \left| \tan { x } -3 \right| +c$
• D. $\displaystyle \log \left| \tan { x } +3 \right| +c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int_{0}^{\pi}|1 + 2\cos x|dx$ is equal to
• A. $\dfrac {2\pi}{3}$
• B. $\pi$
• C. $2$
• D. $\dfrac {\pi}{3} + 2\sqrt {3}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\int \dfrac {9(2 - 3\log x)^{2}}{x} dx =$
• A. $-(3 - 2\log x)^{3}$
• B. $-2(2 - 3\log x)^{3}$
• C. $(2 - 3\log x)^{3}$
• D. $(3 - 2\log x)^{3}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate the integral
$\displaystyle \int_{0}^{1}\frac{(\sin^{-1} {x})^{2}}{\sqrt{1-x^{2}}}dx$
• A. $\pi^{2}$
• B. $-\pi^{2}$
• C. $0$
• D. $\displaystyle \frac{\pi^{3}}{24}$

Solve $\int (3x^2-4)x \; d x, \; x \in R$