Mathematics

Solve
$$\Rightarrow \int dx=\int \left(2+\dfrac{1}{v+2}\right)dv$$


SOLUTION
$$\displaystyle \int 1dx = \int \left(2 + \dfrac{1}{v + 2} \right)dv$$
$$\displaystyle \int 1 dx = \int 2 dv + \int \dfrac{1}{v + 2} dv$$
$$x = 2v + \log (v + 2) + c$$
Hence, this is the answer
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Solve$$\displaystyle \int_0^1 \dfrac{x^2-2}{x^2+1}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
If $$\displaystyle I = \int \frac {dx}{(e^x + 2)^3}$$, then I equals
  • A. $$\displaystyle \frac {1}{8} x + \frac {1}{8} \log (e^x + 2) + \frac {e^x}{4(e^x + 2)^2} + C$$
  • B. $$\displaystyle \frac {1}{8} x + \frac {1}{8} \log (e^x + 2) + \frac {e^x}{(e^x + 2)^2} + C$$
  • C. none of these
  • D. $$\displaystyle \frac {1}{8} x - \frac {1}{8} \log (e^x + 2) + \frac {e^x + 3}{4 (e^x + 2)^2} + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
If $$\int \sqrt{2 + \tan^2 x} dx = \ln (\tan x + \sqrt{2 + \tan^2 x}) + f(x) + c$$, where $$f(x)=$$
  • A. $$\cos^{-1} \left(\dfrac{\sin x}{\sqrt 2} \right)$$
  • B. $$\cos^{-1} \left(\dfrac{\cos x}{\sqrt 2} \right)$$
  • C. $$\sin^{-1} \left(\dfrac{\cos x}{\sqrt 2} \right)$$
  • D. $$\sin^{-1} \left(\dfrac{\sin x}{\sqrt 2} \right)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Integrate the rational function   $$\cfrac {1}{x^4-1}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\displaystyle \frac{3x-1}{(1-x+x^{2})(2+x)}=$$
  • A. $$\displaystyle \frac{x}{x^{2}-x+1}+\frac{1}{x+2}$$
  • B. $$\displaystyle \frac{x}{x^{2}+x+1}+\frac{2}{x+2}$$
  • C. $$\displaystyle \frac{x}{ -x+1}-\frac{2}{x+2}$$
  • D. $$\displaystyle \frac{x}{x^{2}-x+1}-\frac{1}{x+2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer