Mathematics

# solve$\int(1+x)^{2}$

##### SOLUTION
$\begin{matrix} { \int { \left( { 1+x } \right) } ^{ 2 } } \\ \Rightarrow \int { 1+2x+{ x^{ 2 } }dx } \\ \Rightarrow \int { dx+2fxdx+f{ x^{ 2 } } } dx \\ \Rightarrow x+\frac { { 2{ x^{ 2 } } } }{ 2 } +\frac { { { x^{ 3 } } } }{ 3 } +c \\ \Rightarrow x+{ x^{ 2 } }\frac { { { x^{ 3 } } } }{ 3 } +c\, \, \, \, \, Ans \\ \end{matrix}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Evaluate the given integral.
$\displaystyle \int { \cfrac { 1 }{ 1-\sin { x } +\cos { x } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle \int\cfrac{x^{2}}{\sqrt{x^{6}+a^{6}}} \ dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate $\int_{0}^{1} x \tan^{-1} x\ dx$.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Solve: $\int \dfrac{\sin x}{1 + \sin x}dx$
• A. $secx+tanx+x+C$
• B. $secx+tanx-x+C$
• C. $secx-tanx-x+C$
• D. $secx-tanx+x+C$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
The integral $\displaystyle\int \dfrac{\sin^2x \cos^2x}{(\sin^5x+ \cos^3x \sin^2 x+ \sin^3x \cos^2x + \cos^5x)^2}dx$
• A. $\dfrac{1}{1+ \cot^3x}+c$
• B. $\dfrac{-1}{1+ \cot^3x}+c$
• C. $\dfrac{1}{3(1+ \tan^3x)}+c$
• D. $\dfrac{-1}{3(1+ \tan^3x)}+c$