Mathematics

# Solve$\int {{x^{ - 3}}\left( {x + 1} \right)dx}$

##### SOLUTION
$\int \frac{x+1}{^3}.dx$

$=\int [\frac{1}{x^2}+\frac{1}{x^3}]dx$

$=\int \frac{1}{x^2}.dx+\int \frac{1}{x^3}.dx$

$=\frac{x^{-2+1}}{-2+1}+\frac{x^{-3+1}}{-3+1}+c$

$=-\frac{1}{x}-\frac{1}{2x^2}+c$

$=-\frac{1}{x}-\frac{1}{2x^2}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
Solve :
$\displaystyle \int x.(x^{x})^{x}(2\log x+1)dx$
• A. $x^{(x^{x})}+c$
• B. $x^{x}.\log x+c$
• C. does not exist
• D. $(x^{x})^{x}+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate: $\int \dfrac{dx}{x^{1/5}(1+x^{4/5})^{1/2}}$ is
• A. $\sqrt{1+x^{4/5}}+k$
• B. $x^{5/5}(1+x^{4/5})^{1/2}+k$
• C. $x^{1/5}(1+x^{1/5})^{1/2}+k$
• D. $\dfrac{5}{2}\sqrt{1+x^{4/5}}+k$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\displaystyle \int e^{x} \left [\dfrac {1 + \sin x}{1 + \cos x}\right ] dx$ is
• A. $\dfrac {1}{2} e^{x} \sec \dfrac {x}{2} + C$
• B. $e^{x} \sec \dfrac {x}{2} + C$
• C. $\dfrac {1}{2} e^{x} \tan \dfrac {x}{2} + C$
• D. $e^{x} \tan \dfrac {x}{2} + C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
$\int \frac{dx}{(x+\sqrt{x(1+x)})^2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
$\displaystyle\int\limits_{a}^{b}f(x)\ dx=b^3-a^3$, then find $f(x)$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020